Acronym tutatobcu Name tutatoe orthobicupola Lace cityin approx. ASCII-art ``` x3x o3u o3x x3x u3x x3u x3x x3x o3u o3x ``` Dihedral angles at {6} between tricu and tricu:   arccos(-7/8) = 151.044976° at {4} between hip and trip:   arccos(-2/3) = 131.810315° at {4} between trip and trip:   arccos(-2/3) = 131.810315° at {6} between hip and tut:   arccos(-sqrt[3/8]) = 127.761244° at {3} between tricu and trip:   arccos(-sqrt[3/8]) = 127.761244° at {4} between hip and tricu:   arccos(-sqrt[1/6]) = 114.094843° at {6} between hip and hip:   arccos(-1/4) = 104.477512° at {3} between tricu and tut:   arccos(-1/4) = 104.477512° Confer related segmentochora: tutatoe   related CRFs: tutatoe gybcu   gyspid   general polytopal classes: bistratic lace towers

The relation to spid runs as follows: spid in tetrahedral-antiprismatic subsymmetry can be given as xxo3ooo3oxx&#xt. Then gyspid is its axial gyrated version, oxo3ooo3xxx&#xt. And a partial Stott expansion wrt. the second node then produces this polychoron.

Incidence matrix according to Dynkin symbol

```oxo3xxx3xxx&#xt   → both heights = sqrt(5/8) = 0.790569
(tut || pseudo toe || tut)

o..3o..3o..    & | 24  * |  2  1  2  0  0  0 | 1 2  1  2  2 0 0 0 | 1 1  1 2
.o.3.o.3.o.      |  * 24 |  0  0  2  1  1  1 | 0 0  2  2  2 1 1 1 | 0 2  2 2
-----------------+-------+-------------------+--------------------+---------
... x.. ...    & |  2  0 | 24  *  *  *  *  * | 1 1  0  1  0 0 0 0 | 1 1  0 1
... ... x..    & |  2  0 |  * 12  *  *  *  * | 0 2  0  0  2 0 0 0 | 1 0  1 2
oo.3oo.3oo.&#x & |  1  1 |  *  * 48  *  *  * | 0 0  1  1  1 0 0 0 | 0 1  1 1
.x. ... ...      |  0  2 |  *  *  * 12  *  * | 0 0  2  0  0 1 1 0 | 0 2  2 0
... .x. ...      |  0  2 |  *  *  *  * 12  * | 0 0  0  2  0 1 0 1 | 0 2  0 2
... ... .x.      |  0  2 |  *  *  *  *  * 12 | 0 0  0  0  2 0 1 1 | 0 0  2 2
-----------------+-------+-------------------+--------------------+---------
o..3x.. ...    & |  3  0 |  3  0  0  0  0  0 | 8 *  *  *  * * * * | 1 1  0 0
... x..3x..    & |  6  0 |  3  3  0  0  0  0 | * 8  *  *  * * * * | 1 0  0 1
ox. ... ...&#x & |  1  2 |  0  0  2  1  0  0 | * * 24  *  * * * * | 0 1  1 0
... xx. ...&#x & |  2  2 |  1  0  2  0  1  0 | * *  * 24  * * * * | 0 1  0 1
... ... xx.&#x & |  2  2 |  0  1  2  0  0  1 | * *  *  * 24 * * * | 0 0  1 1
.x.3.x. ...      |  0  6 |  0  0  0  3  3  0 | * *  *  *  * 4 * * | 0 2  0 0
.x. ... .x.      |  0  4 |  0  0  0  2  0  2 | * *  *  *  * * 6 * | 0 0  2 0
... .x.3.x.      |  0  6 |  0  0  0  0  3  3 | * *  *  *  * * * 4 | 0 0  0 2
-----------------+-------+-------------------+--------------------+---------
o..3x..3x..    & ♦ 12  0 | 12  6  0  0  0  0 | 4 4  0  0  0 0 0 0 | 2 *  * *
ox.3xx. ...&#x & ♦  3  6 |  3  0  6  3  3  0 | 1 0  3  3  0 1 0 0 | * 8  * *
ox. ... xx.&#x & ♦  2  4 |  0  1  4  2  0  2 | 0 0  2  0  2 0 1 0 | * * 12 *
... xx.3xx.&#x & ♦  6  6 |  3  3  6  0  3  3 | 0 1  0  3  3 0 0 1 | * *  * 8
```