Acronym | traspid |
Name | triangle - small-prismated-pentachoron duoprism |
Circumradius | 2/sqrt(3) = 1.154701 |
Volume | 35 sqrt(15)/192 = 0.706013 |
Face vector | 60, 240, 410, 360, 163, 33 |
Confer |
|
Incidence matrix according to Dynkin symbol
x3o x3o3o3x o3o o3o3o3o | 60 | 2 3 3 | 1 6 6 3 6 3 | 3 3 6 12 6 1 3 3 1 | 3 6 3 2 6 6 2 1 | 1 3 3 1 2 ------------+----+----------+-------------------+----------------------------+------------------------+------------ x . . . . . | 2 | 60 * * | 1 3 3 0 0 0 | 3 3 3 6 3 0 0 0 0 | 3 6 3 1 3 3 1 0 | 1 3 3 1 1 . . x . . . | 2 | * 90 * | 0 2 0 2 2 0 | 1 0 4 4 0 1 2 1 0 | 2 2 0 2 4 2 0 1 | 1 2 1 0 2 . . . . . x | 2 | * * 90 | 0 0 2 0 2 2 | 0 1 0 4 4 0 1 2 1 | 0 2 2 0 2 4 2 1 | 0 1 2 1 2 ------------+----+----------+-------------------+----------------------------+------------------------+------------ x3o . . . . | 3 | 3 0 0 | 20 * * * * * | 3 3 0 0 0 0 0 0 0 | 3 6 3 0 0 0 0 0 | 1 3 3 1 0 x . x . . . | 4 | 2 2 0 | * 90 * * * * | 1 0 2 2 0 0 0 0 0 | 2 2 0 1 2 1 0 0 | 1 2 1 0 1 x . . . . x | 4 | 2 0 2 | * * 90 * * * | 0 1 0 2 2 0 0 0 0 | 0 2 2 0 1 2 1 0 | 0 1 2 1 1 . . x3o . . | 3 | 0 3 0 | * * * 60 * * | 0 0 2 0 0 1 1 0 0 | 1 0 0 2 2 0 0 1 | 1 1 0 0 2 . . x . . x | 4 | 0 2 2 | * * * * 90 * | 0 0 0 2 0 0 1 1 0 | 0 1 0 0 2 2 0 1 | 0 1 1 0 2 . . . . o3x | 3 | 0 0 3 | * * * * * 60 | 0 0 0 0 2 0 0 1 1 | 0 0 1 0 0 2 2 1 | 0 0 1 1 2 ------------+----+----------+-------------------+----------------------------+------------------------+------------ x3o x . . . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | 30 * * * * * * * * | 2 2 0 0 0 0 0 0 | 1 2 1 0 0 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 30 * * * * * * * | 0 2 2 0 0 0 0 0 | 0 1 2 1 0 x . x3o . . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * 60 * * * * * * | 1 0 0 1 1 0 0 0 | 1 1 0 0 1 x . x . . x ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * 90 * * * * * | 0 1 0 0 1 1 0 0 | 0 1 1 0 1 x . . . o3x ♦ 6 | 3 0 6 | 0 0 3 0 0 2 | * * * * 60 * * * * | 0 0 1 0 0 1 1 0 | 0 0 1 1 1 . . x3o3o . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * 15 * * * | 0 0 0 2 0 0 0 1 | 1 0 0 0 2 . . x3o . x ♦ 6 | 0 6 3 | 0 0 0 2 3 0 | * * * * * * 30 * * | 0 0 0 0 2 0 0 1 | 0 1 0 0 2 . . x . o3x ♦ 6 | 0 3 6 | 0 0 0 0 3 2 | * * * * * * * 30 * | 0 0 0 0 0 2 0 1 | 0 0 1 0 2 . . . o3o3x ♦ 4 | 0 0 6 | 0 0 0 0 0 4 | * * * * * * * * 15 | 0 0 0 0 0 0 2 1 | 0 0 0 1 2 ------------+----+----------+-------------------+----------------------------+------------------------+------------ x3o x3o . . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 3 0 3 0 0 0 0 0 0 | 20 * * * * * * * | 1 1 0 0 0 x3o x . . x ♦ 12 | 12 6 6 | 4 6 6 0 3 0 | 2 2 0 3 0 0 0 0 0 | * 30 * * * * * * | 0 1 1 0 0 x3o . . o3x ♦ 9 | 9 0 9 | 3 0 9 0 0 3 | 0 3 0 0 3 0 0 0 0 | * * 20 * * * * * | 0 0 1 1 0 x . x3o3o . ♦ 8 | 4 12 0 | 0 6 0 8 0 0 | 0 0 4 0 0 2 0 0 0 | * * * 15 * * * * | 1 0 0 0 1 x . x3o . x ♦ 12 | 6 12 6 | 0 6 3 4 6 0 | 0 0 2 3 0 0 2 0 0 | * * * * 30 * * * | 0 1 0 0 1 x . x . o3x ♦ 12 | 6 6 12 | 0 3 6 0 6 4 | 0 0 0 3 2 0 0 2 0 | * * * * * 30 * * | 0 0 1 0 1 x . . o3o3x ♦ 8 | 4 0 12 | 0 0 6 0 0 8 | 0 0 0 0 4 0 0 0 2 | * * * * * * 15 * | 0 0 0 1 1 . . x3o3o3x ♦ 20 | 0 30 30 | 0 0 0 20 30 20 | 0 0 0 0 0 5 10 10 5 | * * * * * * * 3 | 0 0 0 0 2 ------------+----+----------+-------------------+----------------------------+------------------------+------------ x3o x3o3o . ♦ 12 | 12 18 0 | 4 18 0 12 0 0 | 6 0 12 0 0 3 0 0 0 | 4 0 0 3 0 0 0 0 | 5 * * * * x3o x3o . x ♦ 18 | 18 18 9 | 6 18 9 6 9 0 | 6 3 6 9 0 0 3 0 0 | 2 3 0 0 3 0 0 0 | * 10 * * * x3o x . o3x ♦ 18 | 18 9 18 | 6 9 18 0 9 6 | 3 6 0 9 6 0 0 3 0 | 0 3 2 0 0 3 0 0 | * * 10 * * x3o . o3o3x ♦ 12 | 12 0 18 | 4 0 18 0 0 12 | 0 6 0 0 12 0 0 0 3 | 0 0 4 0 0 0 3 0 | * * * 5 * x . x3o3o3x ♦ 40 | 20 60 60 | 0 30 30 40 60 40 | 0 0 20 30 20 10 20 20 10 | 0 0 0 5 10 10 5 2 | * * * * 3
or o3o o3o3o3o | 60 | 2 6 | 1 12 6 6 | 6 12 12 2 6 | 6 6 4 12 1 | 2 6 2 ---------------+----+--------+---------------+-----------------+---------------+-------- x . . . . . | 2 | 60 * | 1 6 0 0 | 6 6 6 0 0 | 6 6 2 6 0 | 2 6 1 . . x . . . & | 2 | * 180 | 0 2 2 2 | 1 4 4 1 3 | 2 2 2 6 1 | 1 3 2 ---------------+----+--------+---------------+-----------------+---------------+-------- x3o . . . . | 3 | 3 0 | 20 * * * | 6 0 0 0 0 | 6 6 0 0 0 | 2 6 0 x . x . . . & | 4 | 2 2 | * 180 * * | 1 2 2 0 0 | 2 2 1 3 0 | 1 3 1 . . x3o . . & | 3 | 0 3 | * * 120 * | 0 2 0 1 1 | 1 0 2 2 1 | 1 1 2 . . x . . x | 4 | 0 4 | * * * 90 | 0 0 2 0 2 | 0 1 0 4 1 | 0 2 2 ---------------+----+--------+---------------+-----------------+---------------+-------- x3o x . . . & ♦ 6 | 6 3 | 2 3 0 0 | 60 * * * * | 2 2 0 0 0 | 1 3 0 x . x3o . . & ♦ 6 | 3 6 | 0 3 2 0 | * 120 * * * | 1 0 1 1 0 | 1 1 1 x . x . . x ♦ 8 | 4 8 | 0 4 0 2 | * * 90 * * | 0 1 0 2 0 | 0 2 1 . . x3o3o . & ♦ 4 | 0 6 | 0 0 4 0 | * * * 30 * | 0 0 2 0 1 | 1 0 2 . . x3o . x & ♦ 6 | 0 9 | 0 0 2 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 ---------------+----+--------+---------------+-----------------+---------------+-------- x3o x3o . . & ♦ 9 | 9 9 | 3 9 3 0 | 3 3 0 0 0 | 40 * * * * | 1 1 0 x3o x . . x ♦ 12 | 12 12 | 4 12 0 3 | 4 0 3 0 0 | * 30 * * * | 0 2 0 x . x3o3o . & ♦ 8 | 4 12 | 0 6 8 0 | 0 4 0 2 0 | * * 30 * * | 1 0 1 x . x3o . x & ♦ 12 | 6 18 | 0 9 4 6 | 0 2 3 0 2 | * * * 60 * | 0 1 1 . . x3o3o3x ♦ 20 | 0 60 | 0 0 40 30 | 0 0 0 10 20 | * * * * 3 | 0 0 2 ---------------+----+--------+---------------+-----------------+---------------+-------- x3o x3o3o . & ♦ 12 | 12 18 | 4 18 12 0 | 6 12 0 3 0 | 4 0 3 0 0 | 10 * * x3o x3o . x & ♦ 18 | 18 27 | 6 27 6 9 | 9 6 9 0 3 | 2 3 0 3 0 | * 20 * x . x3o3o3x ♦ 40 | 20 120 | 0 60 80 60 | 0 40 30 20 40 | 0 0 10 20 2 | * * 3
© 2004-2025 | top of page |