Acronym ..., tat || grit Name (degenerate) tat atop grit Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```oo3ox3xx4xx&#x   → height = 0
(tat || grit)

o.3o.3o.4o.    | 64   * |  3  1   3   0  0  0 |  3  3   3  3  3  0  0  0  0 |  1 2  1  3  3  3  0  0 0 | 1  1  1 3 0
.o3.o3.o4.o    |  * 192 |  0  0   1   2  1  1 |  0  0   2  1  1  1  2  2  1 |  0 0  1  2  2  1  1  1 2 | 0  1  1 2 1
---------------+--------+---------------------+-----------------------------+--------------------------+------------
.. .. x. ..    |  2   0 | 96  *   *   *  *  * |  2  1   0  1  0  0  0  0  0 |  1 2  0  2  0  1  0  0 0 | 1  1  0 2 0
.. .. .. x.    |  2   0 |  * 32   *   *  *  * |  0  3   0  0  3  0  0  0  0 |  0 3  0  0  3  3  0  0 0 | 1  0  1 3 0
oo3oo3oo4oo&#x |  1   1 |  *  * 192   *  *  * |  0  0   2  1  1  0  0  0  0 |  0 0  1  2  2  1  0  0 0 | 0  1  1 2 0
.. .x .. ..    |  0   2 |  *  *   * 192  *  * |  0  0   1  0  0  1  1  1  0 |  0 0  1  1  1  0  1  1 1 | 0  1  1 1 1
.. .. .x ..    |  0   2 |  *  *   *   * 96  * |  0  0   0  1  0  0  2  0  1 |  0 0  0  2  0  1  1  0 2 | 0  1  0 2 1
.. .. .. .x    |  0   2 |  *  *   *   *  * 96 |  0  0   0  0  1  0  0  2  1 |  0 0  0  0  2  1  0  1 2 | 0  0  1 2 1
---------------+--------+---------------------+-----------------------------+--------------------------+------------
.. o.3x. ..    |  3   0 |  3  0   0   0  0  0 | 64  *   *  *  *  *  *  *  * |  1 1  0  1  0  0  0  0 0 | 1  1  0 1 0
.. .. x.4x.    |  8   0 |  4  4   0   0  0  0 |  * 24   *  *  *  *  *  *  * |  0 2  0  0  0  1  0  0 0 | 1  0  0 2 0
.. ox .. ..&#x |  1   2 |  0  0   2   1  0  0 |  *  * 192  *  *  *  *  *  * |  0 0  1  1  1  0  0  0 0 | 0  1  1 1 0
.. .. xx ..&#x |  2   2 |  1  0   2   0  1  0 |  *  *   * 96  *  *  *  *  * |  0 0  0  2  0  1  0  0 0 | 0  1  0 2 0
.. .. .. xx&#x |  2   2 |  0  1   2   0  0  1 |  *  *   *  * 96  *  *  *  * |  0 0  0  0  2  1  0  0 0 | 0  0  1 2 0
.o3.x .. ..    |  0   3 |  0  0   0   3  0  0 |  *  *   *  *  * 64  *  *  * |  0 0  1  0  0  0  1  1 0 | 0  1  1 0 1
.. .x3.x ..    |  0   6 |  0  0   0   3  3  0 |  *  *   *  *  *  * 64  *  * |  0 0  0  1  0  0  1  0 1 | 0  1  0 1 1
.. .x .. .x    |  0   4 |  0  0   0   2  0  2 |  *  *   *  *  *  *  * 96  * |  0 0  0  0  1  0  0  1 1 | 0  0  1 1 1
.. .. .x4.x    |  0   8 |  0  0   0   0  4  4 |  *  *   *  *  *  *  *  * 24 |  0 0  0  0  0  1  0  0 2 | 0  0  0 2 1
---------------+--------+---------------------+-----------------------------+--------------------------+------------
o.3o.3x. ..    ♦  4   0 |  6  0   0   0  0  0 |  4  0   0  0  0  0  0  0  0 | 16 *  *  *  *  *  *  * * | 1  1  0 0 0
.. o.3x.4x.    ♦ 24   0 | 24 12   0   0  0  0 |  8  6   0  0  0  0  0  0  0 |  * 8  *  *  *  *  *  * * | 1  0  0 1 0
oo3ox .. ..&#x ♦  1   3 |  0  0   3   3  0  0 |  0  0   3  0  0  1  0  0  0 |  * * 64  *  *  *  *  * * | 0  1  1 0 0
.. ox3xx ..&#x ♦  3   6 |  3  0   6   3  3  0 |  1  0   3  3  0  0  1  0  0 |  * *  * 64  *  *  *  * * | 0  1  0 1 0
.. ox .. xx&#x ♦  2   4 |  0  1   4   2  0  2 |  0  0   2  0  2  0  0  1  0 |  * *  *  * 96  *  *  * * | 0  0  1 1 0
.. .. xx4xx&#x ♦  8   8 |  4  4   8   0  4  4 |  0  1   0  4  4  0  0  0  1 |  * *  *  *  * 24  *  * * | 0  0  0 2 0
.o3.x3.x ..    ♦  0  12 |  0  0   0  12  6  0 |  0  0   0  0  0  4  4  0  0 |  * *  *  *  *  * 16  * * | 0  1  0 0 1
.o3.x .. .x    ♦  0   6 |  0  0   0   6  0  3 |  0  0   0  0  0  2  0  3  0 |  * *  *  *  *  *  * 32 * | 0  0  1 0 1
.. .x3.x4.x    ♦  0  48 |  0  0   0  24 24 24 |  0  0   0  0  0  0  8 12  6 |  * *  *  *  *  *  *  * 8 | 0  0  0 1 1
---------------+--------+---------------------+-----------------------------+--------------------------+------------
o.3o.3x.4x.    ♦ 64   0 | 96 32   0   0  0  0 | 64 24   0  0  0  0  0  0  0 | 16 8  0  0  0  0  0  0 0 | 1  *  * * *
oo3ox3xx ..&#x ♦  4  12 |  6  0  12  12  6  0 |  4  0  12  6  0  4  4  0  0 |  1 0  4  4  0  0  1  0 0 | * 16  * * *
oo3ox .. xx&#x ♦  2   6 |  0  1   6   6  0  3 |  0  0   6  0  3  2  0  3  0 |  0 0  2  0  3  0  0  1 0 | *  * 32 * *
.. ox3xx4xx&#x ♦ 24  48 | 24 12  48  24 24 24 |  8  6  24 24 24  0  8 12  6 |  0 1  0  8 12  6  0  0 1 | *  *  * 8 *
.o3.x3.x4.x    ♦  0 192 |  0  0   0 192 96 96 |  0  0   0  0  0 64 64 96 24 |  0 0  0  0  0  0 16 32 8 | *  *  * * 1
```