Acronym sriddip, K-4.111
Name small-rhombicosidodecahedron prism
Segmentochoron display
Cross sections
 ©
Circumradius sqrt[3+sqrt(5)] = 2.288246
General of army (is itself convex)
Colonel of regiment (is itself locally convex – other uniform polyhedral members: saddiddip   & others)
Dihedral angles
  • at {4} between cube and trip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843°
  • at {4} between cube and pip:   arccos(-sqrt[(5+sqrt(5))/10]) = 148.282526°
  • at {4} between cube and srid:   90°
  • at {5} between pip and srid:   90°
  • at {3} between srid and trip:   90°
Confer
related segmentochora:
pecupe  
general polytopal classes:
segmentochora  
External
links
hedrondude  

As abstract polytope sriddip is isomorphic to qriddip, thereby replacing prograde pentagons by retrograde pentagrams, resp. replacing srid by qrid and pip by stip.


Incidence matrix according to Dynkin symbol

x x3o5x

. . . . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
--------+-----+------------+----------------+-----------
x . . . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x . . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . . x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
--------+-----+------------+----------------+-----------
x x . . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . . x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3o . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x . x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. . o5x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
--------+-----+------------+----------------+-----------
x x3o .    6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x . x    8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x . o5x   10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3o5x   60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2

x x3/2o5/4x

. .   .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
------------+-----+------------+----------------+-----------
x .   .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
------------+-----+------------+----------------+-----------
x x   .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3/2o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x   .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. .   o5/4x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
------------+-----+------------+----------------+-----------
x x3/2o   .    6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x   .   x    8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x .   o5/4x   10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3/2o5/4x   60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2

xx3oo5xx&#x   → height = 1
(srid || srid)

o.3o.5o.    | 60  * |  2  2  1  0  0 |  1  2  1  2  2  0  0  0 | 1  1  2  1 0
.o3.o5.o    |  * 60 |  0  0  1  2  2 |  0  0  0  2  2  1  2  1 | 0  1  2  1 1
------------+-------+----------------+-------------------------+-------------
x. .. ..    |  2  0 | 60  *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. .. x.    |  2  0 |  * 60  *  *  * |  0  1  1  0  1  0  0  0 | 1  0  1  1 0
oo3oo5oo&#x |  1  1 |  *  * 60  *  * |  0  0  0  2  2  0  0  0 | 0  1  2  1 0
.x .. ..    |  0  2 |  *  *  * 60  * |  0  0  0  1  0  1  1  0 | 0  1  1  0 1
.. .. .x    |  0  2 |  *  *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+-------+----------------+-------------------------+-------------
x.3o. ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. .. x.    |  4  0 |  2  2  0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5x.    |  5  0 |  0  5  0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xx .. ..&#x |  2  2 |  1  0  2  1  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. .. xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5.x    |  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+-------+----------------+-------------------------+-------------
x.3o.5x.     60  0 | 60 60  0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xx3oo ..&#x   3  3 |  3  0  3  3  0 |  1  0  0  3  0  1  0  0 | * 20  *  * *
xx .. xx&#x   4  4 |  2  2  4  2  2 |  0  1  0  2  2  0  1  0 | *  * 30  * *
.. oo5xx&#x   5  5 |  0  5  5  0  5 |  0  0  1  0  5  0  0  1 | *  *  * 12 *
.x3.o5.x      0 24 |  0  0  0 24 24 |  0  0  0  0  0 20 30 12 | *  *  *  * 1


© 2004-2018
top of page