Acronym | sriddip, K-4.111 |
Name | small-rhombicosidodecahedron prism |
Segmentochoron display | |
Cross sections |
© |
Circumradius | sqrt[3+sqrt(5)] = 2.288246 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex – other uniform polyhedral members: saddiddip & others) |
Dihedral angles | |
Face vector | 120, 300, 244, 64 |
Confer |
|
External links |
As abstract polytope sriddip is isomorphic to qriddip, thereby replacing prograde pentagons by retrograde pentagrams, resp. replacing srid by qrid and pip by stip.
Incidence matrix according to Dynkin symbol
x x3o5x . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 --------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 --------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 60 * | 0 1 0 1 . . o5x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 --------+-----+------------+----------------+----------- x x3o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 30 * * x . o5x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3o5x ♦ 60 | 0 60 60 | 0 0 20 30 12 | * * * 2 snubbed forms: β2x3o5β
x x3/2o5/4x . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ------------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 ------------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 60 * | 0 1 0 1 . . o5/4x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 ------------+-----+------------+----------------+----------- x x3/2o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 30 * * x . o5/4x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3/2o5/4x ♦ 60 | 0 60 60 | 0 0 20 30 12 | * * * 2
xx3oo5xx&#x → height = 1
(srid || srid)
o.3o.5o. | 60 * | 2 2 1 0 0 | 1 2 1 2 2 0 0 0 | 1 1 2 1 0
.o3.o5.o | * 60 | 0 0 1 2 2 | 0 0 0 2 2 1 2 1 | 0 1 2 1 1
------------+-------+----------------+-------------------------+-------------
x. .. .. | 2 0 | 60 * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 0
.. .. x. | 2 0 | * 60 * * * | 0 1 1 0 1 0 0 0 | 1 0 1 1 0
oo3oo5oo&#x | 1 1 | * * 60 * * | 0 0 0 2 2 0 0 0 | 0 1 2 1 0
.x .. .. | 0 2 | * * * 60 * | 0 0 0 1 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * * 60 | 0 0 0 0 1 0 1 1 | 0 0 1 1 1
------------+-------+----------------+-------------------------+-------------
x.3o. .. | 3 0 | 3 0 0 0 0 | 20 * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 2 0 0 0 | * 30 * * * * * * | 1 0 1 0 0
.. o.5x. | 5 0 | 0 5 0 0 0 | * * 12 * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * * 60 * * * * | 0 1 1 0 0
.. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * * 60 * * * | 0 0 1 1 0
.x3.o .. | 0 3 | 0 0 0 3 0 | * * * * * 20 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 2 2 | * * * * * * 30 * | 0 0 1 0 1
.. .o5.x | 0 5 | 0 0 0 0 5 | * * * * * * * 12 | 0 0 0 1 1
------------+-------+----------------+-------------------------+-------------
x.3o.5x. ♦ 60 0 | 60 60 0 0 0 | 20 30 12 0 0 0 0 0 | 1 * * * *
xx3oo ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 0 3 0 1 0 0 | * 20 * * *
xx .. xx&#x ♦ 4 4 | 2 2 4 2 2 | 0 1 0 2 2 0 1 0 | * * 30 * *
.. oo5xx&#x ♦ 5 5 | 0 5 5 0 5 | 0 0 1 0 5 0 0 1 | * * * 12 *
.x3.o5.x ♦ 0 24 | 0 0 0 24 24 | 0 0 0 0 0 20 30 12 | * * * * 1
© 2004-2024 | top of page |