Acronym siidip
Name small-icosicosidodecahedron prism
Circumradius sqrt[(19+3 sqrt(5))/8] = 1.792631
Colonel of regiment (is itself locally convex – other uniform polyhedral members: sidditdiddip   & others)
Dihedral angles
  • at {4} between hip and stip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632°
  • at {4} between hip and trip:   arccos(-sqrt(5)/3) = 138.189685°
  • at {6} between hip and siid:   90°
  • at {5/2} between siid and stip:   90°
  • at {3} between siid and trip:   90°
Face vector 120, 300, 224, 54
Confer
scaliform relative:
siida  
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope siidip is isomorphic to giidip, thereby replacing pentagrams by pentagons, resp. replacing siid by giid and stip by pip.


Incidence matrix according to Dynkin symbol

x x5/2o3x3*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/2o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/2o .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x3*b   12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/2o3x3*b   60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2

x x5/3o3/2x3*b

. .   .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
---------------+-----+------------+----------------+-----------
x .   .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
---------------+-----+------------+----------------+-----------
x x   .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/3o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   .   x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
---------------+-----+------------+----------------+-----------
x x5/3o   .      10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   .   x3*b   12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3/2x       6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/3o3/2x3*b   60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2

© 2004-2024
top of page