Acronym | scatnit |
Name | small cellitrispenteractitriacontaditeron |
Circumradius | sqrt[17+4 sqrt(2)]/2 = 2.379961 |
Coordinates | (1+2 sqrt(2), 1+sqrt(2), sqrt(2)-1, 1, 1)/2 & all permutations, all changes of sign |
Colonel of regiment | sibacadint |
Face vector | 1920, 6720, 5920, 1600, 102 |
Confer |
|
As abstract polytope scatnit is isomorphic to gactanet, thereby interchanging the roles of octagons and octagrams, resp. replacing the girco by quitco, stop by op, and interchanging the roles of socco and gocco, resp. replacing the thatpath by thaquitpath, goccope by soccope, and sichado by gichado.
Incidence matrix according to Dynkin symbol
_x _- /| _3- 4/3 | _- / | x---3---x<---4---x 3 -_ \ | 3/2 4 | -_ \| -o
x3x4x4/3x3o3/2*b3*d *c4*e . . . . . | 1920 | 1 2 2 2 | 2 2 2 2 2 1 2 1 1 | 2 2 1 2 1 1 2 1 1 1 | 2 1 1 1 1 --------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 2 2 1 2 1 1 0 0 0 0 | 2 1 1 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 --------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 . x4x . . | 8 | 0 4 4 0 | * * * 480 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 {8} . x . x . *b3*d | 6 | 0 3 0 3 | * * * * 640 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . o3/2*b | 3 | 0 3 0 0 | * * * * * 640 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x4/3x . | 8 | 0 0 4 4 | * * * * * * 480 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 {8/3} . . x . o *c4*e | 4 | 0 0 4 0 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x3o | 3 | 0 0 0 3 | * * * * * * * * 640 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 --------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x4x . . ♦ 48 | 24 24 24 0 | 8 12 0 6 0 0 0 0 0 | 80 * * * * * * * * * | 1 1 0 0 0 x3x . x . *b3*d ♦ 24 | 12 12 0 12 | 4 0 6 0 4 0 0 0 0 | * 160 * * * * * * * * | 1 0 1 0 0 x3x . . o3/2*b ♦ 12 | 6 12 0 0 | 4 0 0 0 0 4 0 0 0 | * * 160 * * * * * * * | 0 1 1 0 0 x . x4/3x . ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 0 0 | * * * 240 * * * * * * | 1 0 0 1 0 x . x . o *c4*e ♦ 8 | 4 0 8 0 | 0 4 0 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x3o ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 0 2 | * * * * * 320 * * * * | 0 0 1 1 0 . x4x4/3x . *b3*d ♦ 48 | 0 24 24 24 | 0 0 0 6 8 0 6 0 0 | * * * * * * 80 * * * | 1 0 0 0 1 . x4x . o3/2*b *c4*e ♦ 24 | 0 24 24 0 | 0 0 0 6 0 8 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x3o3/2*b3*d ♦ 12 | 0 12 0 12 | 0 0 0 0 4 4 0 0 4 | * * * * * * * * 160 * | 0 0 1 0 1 . . x4/3x3o *c4*e ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 6 6 8 | * * * * * * * * * 80 | 0 0 0 1 1 --------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x4x4/3x . *b3*d ♦ 384 | 192 192 192 192 | 64 96 96 48 64 0 48 0 0 | 8 16 0 24 0 0 8 0 0 0 | 10 * * * * x3x4x . o3/2*b *c4*e ♦ 192 | 96 192 192 0 | 64 96 0 48 0 64 0 48 0 | 8 0 16 0 24 0 0 8 0 0 | * 10 * * * x3x . x3o3/2*b3*d ♦ 60 | 30 60 0 60 | 20 0 30 0 20 20 0 0 20 | 0 5 5 0 0 10 0 0 5 0 | * * 32 * * x . x4/3x3o *c4*e ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 12 12 16 | 0 0 0 6 6 8 0 0 0 2 | * * * 40 * . x4x4/3x3o3/2*b3*d *c4*e ♦ 192 | 0 192 192 192 | 0 0 0 48 64 64 48 48 64 | 0 0 0 0 0 0 8 8 16 8 | * * * * 10
_x _- /| _3- 4/3 | _- / | x---3---x<---4---x 3/2 -_ \ | -3_ 4/3 | -_ \| -o
x3x4x4/3x3/2o3*b3*d *c4/3*e . . . . . | 1920 | 1 2 2 2 | 2 2 2 2 2 1 2 1 1 | 2 2 1 2 1 1 2 1 1 1 | 2 1 1 1 1 ----------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 2 2 1 2 1 1 0 0 0 0 | 2 1 1 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 ----------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 . x4x . . | 8 | 0 4 4 0 | * * * 480 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 {8} . x . x . *b3*d | 6 | 0 3 0 3 | * * * * 640 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . o3*b | 3 | 0 3 0 0 | * * * * * 640 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x4/3x . | 8 | 0 0 4 4 | * * * * * * 480 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 {8/3} . . x . o *c4/3*e | 4 | 0 0 4 0 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x3/2o | 3 | 0 0 0 3 | * * * * * * * * 640 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x4x . . ♦ 48 | 24 24 24 0 | 8 12 0 6 0 0 0 0 0 | 80 * * * * * * * * * | 1 1 0 0 0 x3x . x . *b3*d ♦ 24 | 12 12 0 12 | 4 0 6 0 4 0 0 0 0 | * 160 * * * * * * * * | 1 0 1 0 0 x3x . . o3*b ♦ 12 | 6 12 0 0 | 4 0 0 0 0 4 0 0 0 | * * 160 * * * * * * * | 0 1 1 0 0 x . x4/3x . ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 0 0 | * * * 240 * * * * * * | 1 0 0 1 0 x . x . o *c4/3*e ♦ 8 | 4 0 8 0 | 0 4 0 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x3/2o ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 0 2 | * * * * * 320 * * * * | 0 0 1 1 0 . x4x4/3x . *b3*d ♦ 48 | 0 24 24 24 | 0 0 0 6 8 0 6 0 0 | * * * * * * 80 * * * | 1 0 0 0 1 . x4x . o3*b *c4/3*e ♦ 24 | 0 24 24 0 | 0 0 0 6 0 8 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x3/2o3*b3*d ♦ 12 | 0 12 0 12 | 0 0 0 0 4 4 0 0 4 | * * * * * * * * 160 * | 0 0 1 0 1 . . x4/3x3/2o *c4/3*e ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 6 6 8 | * * * * * * * * * 80 | 0 0 0 1 1 ----------------------------+------+--------------------+-------------------------------------+-------------------------------------+--------------- x3x4x4/3x . *b3*d ♦ 384 | 192 192 192 192 | 64 96 96 48 64 0 48 0 0 | 8 16 0 24 0 0 8 0 0 0 | 10 * * * * x3x4x . o3*b *c4/3*e ♦ 192 | 96 192 192 0 | 64 96 0 48 0 64 0 48 0 | 8 0 16 0 24 0 0 8 0 0 | * 10 * * * x3x . x3/2o3*b3*d ♦ 60 | 30 60 0 60 | 20 0 30 0 20 20 0 0 20 | 0 5 5 0 0 10 0 0 5 0 | * * 32 * * x . x4/3x3/2o *c4/3*e ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 12 12 16 | 0 0 0 6 6 8 0 0 0 2 | * * * 40 * . x4x4/3x3/2o3*b3*d *c4/3*e ♦ 192 | 0 192 192 192 | 0 0 0 48 64 64 48 48 64 | 0 0 0 0 0 0 8 8 16 8 | * * * * 10
© 2004-2025 | top of page |