Acronym | saxoke |
Name |
small exiocteracti-diacosipentacontahexazetton, heptellated octeract |
Circumradius | sqrt[(5+sqrt(2))/2] = 1.790840 |
Inradius wrt. oca | [1+4 sqrt(2)]/4 = 1.664214 |
Inradius wrt. hopip | [7+sqrt(2)]/sqrt(28) = 1.590137 |
Inradius wrt. squahix | [1+3 sqrt(2)]/sqrt(12) = 1.513420 |
Inradius wrt. cubpen | [5+sqrt(2)]/sqrt(20) = 1.434262 |
Inradius wrt. tettes | [1+2 sqrt(2)]/sqrt(8) = 1.353553 |
Inradius wrt. trapent | [3+sqrt(2)]/sqrt(12) = 1.274274 |
Inradius wrt. hept | (1+sqrt(2))/2 = 1.207107 |
Coordinates | ((1+sqrt(2))/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Dihedral angles
(at margins) |
|
Face vector | 2048, 14336, 46592, 89600, 108416, 81536, 34976, 6560 |
Confer |
|
As abstract polytope saxoke is isomorphic to quaxoke.
Incidence matrix according to Dynkin symbol
x3o3o3o3o3o3o4x . . . . . . . . | 2048 | 7 7 | 21 42 21 | 35 105 105 35 | 35 140 210 140 35 | 21 105 210 210 105 21 | 7 42 105 140 105 42 7 | 1 7 21 35 35 21 7 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x . . . . . . . | 2 | 7168 * | 6 6 0 | 15 30 15 0 | 20 60 60 20 0 | 15 60 90 60 15 0 | 6 30 60 60 30 6 0 | 1 6 15 20 15 6 1 0 . . . . . . . x | 2 | * 7168 | 0 6 6 | 0 15 30 15 | 0 20 60 60 20 | 0 15 60 90 60 15 | 0 6 30 60 60 30 6 | 0 1 6 15 20 15 6 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o . . . . . . | 3 | 3 0 | 14336 * * | 5 5 0 0 | 10 20 10 0 0 | 10 30 30 10 0 0 | 5 20 30 20 5 0 0 | 1 5 10 10 5 1 0 0 x . . . . . . x | 4 | 2 2 | * 21504 * | 0 5 5 0 | 0 10 20 10 0 | 0 10 30 30 10 0 | 0 5 20 30 20 5 0 | 0 1 5 10 10 5 1 0 . . . . . . o4x | 4 | 0 4 | * * 10752 | 0 0 5 5 | 0 0 10 20 10 | 0 0 10 30 30 10 | 0 0 5 20 30 20 5 | 0 0 1 5 10 10 5 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o3o . . . . . ♦ 4 | 6 0 | 4 0 0 | 17920 * * * | 4 4 0 0 0 | 6 12 6 0 0 0 | 4 12 12 4 0 0 0 | 1 4 6 4 1 0 0 0 x3o . . . . . x ♦ 6 | 6 3 | 2 3 0 | * 35840 * * | 0 4 4 0 0 | 0 6 12 6 0 0 | 0 4 12 12 4 0 0 | 0 1 4 6 4 1 0 0 x . . . . . o4x ♦ 8 | 4 8 | 0 4 2 | * * 26880 * | 0 0 4 4 0 | 0 0 6 12 6 0 | 0 0 4 12 12 4 0 | 0 0 1 4 6 4 1 0 . . . . . o3o4x ♦ 8 | 0 12 | 0 0 6 | * * * 8960 | 0 0 0 4 4 | 0 0 0 6 12 6 | 0 0 0 4 12 12 4 | 0 0 0 1 4 6 4 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o3o3o . . . . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 | 14336 * * * * | 3 3 0 0 0 0 | 3 6 3 0 0 0 0 | 1 3 3 1 0 0 0 0 x3o3o . . . . x ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | * 35840 * * * | 0 3 3 0 0 0 | 0 3 6 3 0 0 0 | 0 1 3 3 1 0 0 0 x3o . . . . o4x ♦ 12 | 12 12 | 4 12 3 | 0 4 3 0 | * * 35840 * * | 0 0 3 3 0 0 | 0 0 3 6 3 0 0 | 0 0 1 3 3 1 0 0 x . . . . o3o4x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * * 17920 * | 0 0 0 3 3 0 | 0 0 0 3 6 3 0 | 0 0 0 1 3 3 1 0 . . . . o3o3o4x ♦ 16 | 0 32 | 0 0 24 | 0 0 0 8 | * * * * 4480 | 0 0 0 0 3 3 | 0 0 0 0 3 6 3 | 0 0 0 0 1 3 3 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o3o3o3o . . . ♦ 6 | 15 0 | 20 0 0 | 15 0 0 0 | 6 0 0 0 0 | 7168 * * * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0 0 0 x3o3o3o . . . x ♦ 10 | 20 5 | 20 10 0 | 10 10 0 0 | 2 5 0 0 0 | * 21504 * * * * | 0 2 2 0 0 0 0 | 0 1 2 1 0 0 0 0 x3o3o . . . o4x ♦ 16 | 24 16 | 16 24 4 | 4 16 6 0 | 0 4 4 0 0 | * * 26880 * * * | 0 0 2 2 0 0 0 | 0 0 1 2 1 0 0 0 x3o . . . o3o4x ♦ 24 | 24 36 | 8 36 18 | 0 12 18 3 | 0 0 6 3 0 | * * * 17920 * * | 0 0 0 2 2 0 0 | 0 0 0 1 2 1 0 0 x . . . o3o3o4x ♦ 32 | 16 64 | 0 32 48 | 0 0 24 16 | 0 0 0 8 2 | * * * * 6720 * | 0 0 0 0 2 2 0 | 0 0 0 0 1 2 1 0 . . . o3o3o3o4x ♦ 32 | 0 80 | 0 0 80 | 0 0 0 40 | 0 0 0 0 10 | * * * * * 1344 | 0 0 0 0 0 2 2 | 0 0 0 0 0 1 2 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o3o3o3o3o . . ♦ 7 | 21 0 | 35 0 0 | 35 0 0 0 | 21 0 0 0 0 | 7 0 0 0 0 0 | 2048 * * * * * * | 1 1 0 0 0 0 0 0 x3o3o3o3o . . x ♦ 12 | 30 6 | 40 15 0 | 30 20 0 0 | 12 15 0 0 0 | 2 6 0 0 0 0 | * 7168 * * * * * | 0 1 1 0 0 0 0 0 x3o3o3o . . o4x ♦ 20 | 40 20 | 40 40 5 | 20 40 10 0 | 4 20 10 0 0 | 0 4 5 0 0 0 | * * 10752 * * * * | 0 0 1 1 0 0 0 0 x3o3o . . o3o4x ♦ 32 | 48 48 | 32 72 24 | 8 48 36 4 | 0 12 24 6 0 | 0 0 6 4 0 0 | * * * 8960 * * * | 0 0 0 1 1 0 0 0 x3o . . o3o3o4x ♦ 48 | 48 96 | 16 96 72 | 0 32 72 24 | 0 0 24 24 3 | 0 0 0 8 3 0 | * * * * 4480 * * | 0 0 0 0 1 1 0 0 x . . o3o3o3o4x ♦ 64 | 32 160 | 0 80 160 | 0 0 80 80 | 0 0 0 40 20 | 0 0 0 0 10 2 | * * * * * 1344 * | 0 0 0 0 0 1 1 0 . . o3o3o3o3o4x ♦ 64 | 0 192 | 0 0 240 | 0 0 0 160 | 0 0 0 0 60 | 0 0 0 0 0 12 | * * * * * * 224 | 0 0 0 0 0 0 1 1 ----------------+------+-----------+-------------------+------------------------+------------------------------+----------------------------------+------------------------------------+----------------------------------- x3o3o3o3o3o3o . ♦ 8 | 28 0 | 56 0 0 | 70 0 0 0 | 56 0 0 0 0 | 28 0 0 0 0 0 | 8 0 0 0 0 0 0 | 256 * * * * * * * x3o3o3o3o3o . x ♦ 14 | 42 7 | 70 21 0 | 70 35 0 0 | 42 35 0 0 0 | 14 21 0 0 0 0 | 2 7 0 0 0 0 0 | * 1024 * * * * * * x3o3o3o3o . o4x ♦ 24 | 60 24 | 80 60 6 | 60 80 15 0 | 24 60 20 0 0 | 4 24 15 0 0 0 | 0 4 6 0 0 0 0 | * * 1792 * * * * * x3o3o3o . o3o4x ♦ 40 | 80 60 | 80 120 30 | 40 120 60 5 | 8 60 60 10 0 | 0 12 30 10 0 0 | 0 0 6 5 0 0 0 | * * * 1792 * * * * x3o3o . o3o3o4x ♦ 64 | 96 128 | 64 192 96 | 16 128 144 32 | 0 32 96 48 4 | 0 0 24 32 6 0 | 0 0 0 8 4 0 0 | * * * * 1120 * * * x3o . o3o3o3o4x ♦ 96 | 96 240 | 32 240 240 | 0 80 240 120 | 0 0 80 120 30 | 0 0 0 40 30 3 | 0 0 0 0 10 3 0 | * * * * * 448 * * x . o3o3o3o3o4x ♦ 128 | 64 384 | 0 192 480 | 0 0 240 320 | 0 0 0 160 120 | 0 0 0 0 60 24 | 0 0 0 0 0 12 2 | * * * * * * 112 * . o3o3o3o3o3o4x ♦ 128 | 0 448 | 0 0 672 | 0 0 0 560 | 0 0 0 0 280 | 0 0 0 0 0 84 | 0 0 0 0 0 0 14 | * * * * * * * 16
© 2004-2025 | top of page |