Acronym | togdow |
Name |
triangle-octagrammic disphenoid, triangle atop fully orthogonal octagram |
Circumradius | sqrt[(10+sqrt(2))/28] = 0.638475 |
Dual | (selfdual) |
Face vector | 11, 35, 50, 35, 11 |
Confer |
|
Incidence matrix according to Dynkin symbol
xo3oo ox8/3oo&#x → height = sqrt[(3 sqrt(2)-2)/6] = 0.611370 (pyramid product of a triangle and an octagram) o.3o. o.8/3o. | 3 * ♦ 2 8 0 | 1 16 8 0 | 8 16 1 | 8 2 .o3.o .o8/3.o | * 8 | 0 3 2 | 0 3 6 1 | 1 6 3 | 2 3 -----------------+-----+--------+-----------+--------+---- x. .. .. .. | 2 0 | 3 * * ♦ 1 8 0 0 | 8 8 0 | 8 1 oo3oo oo8/3oo&#x | 1 1 | * 24 * | 0 2 2 0 | 1 4 1 | 2 2 .. .. .x .. | 0 2 | * * 8 | 0 0 3 1 | 0 3 3 | 1 3 -----------------+-----+--------+-----------+--------+---- x.3o. .. .. | 3 0 | 3 0 0 | 1 * * * | 8 0 0 | 8 0 xo .. .. ..&#x | 2 1 | 1 2 0 | * 24 * * | 1 2 0 | 2 1 .. .. ox ..&#x | 1 2 | 0 2 1 | * * 24 * | 0 2 1 | 1 2 .. .. .x8/3.o | 0 8 | 0 0 8 | * * * 1 | 0 0 3 | 0 3 -----------------+-----+--------+-----------+--------+---- xo3oo .. ..&#x ♦ 3 1 | 3 3 0 | 1 3 0 0 | 8 * * | 2 0 xo .. ox ..&#x ♦ 2 2 | 1 4 1 | 0 2 2 0 | * 24 * | 1 1 .. .. ox8/3oo&#x ♦ 1 8 | 0 8 8 | 0 0 8 1 | * * 3 | 0 2 -----------------+-----+--------+-----------+--------+---- xo3oo ox ..&#x ♦ 3 2 | 3 6 1 | 1 6 3 0 | 2 3 0 | 8 * xo .. ox8/3oo&#x ♦ 2 8 | 1 16 8 | 0 8 16 1 | 0 8 2 | * 3
xo3oo ox4/3ox&#x → height = sqrt[(3 sqrt(2)-2)/6] = 0.611370 (pyramid product of a triangle and an octagram) o.3o. o.4/3o. | 3 * ♦ 2 8 0 0 | 1 16 4 4 0 | 8 8 8 1 | 4 4 2 .o3.o .o4/3.o | * 8 | 0 3 1 1 | 0 3 3 3 1 | 1 3 3 3 | 1 1 3 -----------------+-----+----------+--------------+-----------+------ x. .. .. .. | 2 0 | 3 * * * ♦ 1 8 0 0 0 | 8 4 4 0 | 4 4 1 oo3oo oo4/3oo&#x | 1 1 | * 24 * * | 0 2 1 1 0 | 1 2 2 1 | 1 1 2 .. .. .x .. | 0 2 | * * 4 * | 0 0 3 0 1 | 0 3 0 3 | 1 0 3 .. .. .. .x | 0 2 | * * * 4 | 0 0 0 3 1 | 0 0 3 3 | 0 1 3 -----------------+-----+----------+--------------+-----------+------ x.3o. .. .. | 3 0 | 3 0 0 0 | 1 * * * * | 8 0 0 0 | 4 4 0 xo .. .. ..&#x | 2 1 | 1 2 0 0 | * 24 * * * | 1 1 1 0 | 1 1 1 .. .. ox ..&#x | 1 2 | 0 2 1 0 | * * 12 * * | 0 2 0 1 | 1 0 2 .. .. .. ox&#x | 1 2 | 0 2 0 1 | * * * 12 * | 0 0 2 1 | 0 1 2 .. .. .x4/3.x | 0 8 | 0 0 4 4 | * * * * 1 | 0 0 0 3 | 0 0 3 -----------------+-----+----------+--------------+-----------+------ xo3oo .. ..&#x ♦ 3 1 | 3 3 0 0 | 1 3 0 0 0 | 8 * * * | 1 1 0 xo .. ox ..&#x ♦ 2 2 | 1 4 1 0 | 0 2 2 0 0 | * 12 * * | 1 0 1 xo .. .. ox&#x ♦ 2 2 | 1 4 0 1 | 0 2 0 2 0 | * * 12 * | 0 1 1 .. .. ox4/3ox&#x ♦ 1 8 | 0 8 4 4 | 0 0 4 4 1 | * * * 3 | 0 0 2 -----------------+-----+----------+--------------+-----------+------ xo3oo ox ..&#x ♦ 3 2 | 3 6 1 0 | 1 6 3 0 0 | 2 3 0 0 | 4 * * xo3oo .. ox&#x ♦ 3 2 | 3 6 0 1 | 1 6 0 3 0 | 2 0 3 0 | * 4 * xo .. ox4/3ox&#x ♦ 2 8 | 1 16 4 4 | 0 8 8 8 1 | 0 4 4 2 | * * 3
© 2004-2024 | top of page |