Acronym | quapox |
Name | quasiprismated hexeract |
Circumradius | sqrt[(6-3 sqrt(2))/2] = 0.937379 |
Coordinates | ((sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Face vector | 1280, 7680, 14400, 11200, 3708, 508 |
Confer |
|
As abstract polytope quapox is isomorphic to spox, thereby replacing quidpith by sidpith and quappin by span.
Incidence matrix according to Dynkin symbol
o3o3x3o3o4/3x . . . . . . | 1280 | 9 3 | 9 9 18 3 | 3 9 18 3 9 9 1 | 3 6 3 9 9 3 | 1 3 3 3 --------------+------+-----------+--------------------+---------------------------------+------------------------+-------------- . . x . . . | 2 | 5760 * | 2 2 2 0 | 1 4 4 1 2 1 0 | 2 2 2 4 2 1 | 1 1 1 2 . . . . . x | 2 | * 1920 | 0 0 6 2 | 0 0 6 0 3 6 1 | 0 2 0 3 6 3 | 0 1 2 3 --------------+------+-----------+--------------------+---------------------------------+------------------------+-------------- . o3x . . . | 3 | 3 0 | 3840 * * * | 1 2 2 0 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x3o . . | 3 | 3 0 | * 3840 * * | 0 2 0 1 1 0 0 | 1 0 2 2 0 1 | 1 1 0 2 . . x . . x | 4 | 2 2 | * * 5760 * | 0 0 2 0 1 1 0 | 0 1 0 2 2 1 | 0 1 1 2 . . . . o4/3x | 4 | 0 4 | * * * 960 | 0 0 0 0 0 3 1 | 0 0 0 0 3 3 | 0 0 1 3 --------------+------+-----------+--------------------+---------------------------------+------------------------+-------------- o3o3x . . . ♦ 4 | 6 0 | 4 0 0 0 | 960 * * * * * * | 2 2 0 0 0 0 | 1 2 1 0 . o3x3o . . ♦ 6 | 12 0 | 4 4 0 0 | * 1920 * * * * * | 1 0 1 1 0 0 | 1 1 0 1 . o3x . . x ♦ 6 | 6 3 | 2 0 3 0 | * * 3840 * * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o3o . ♦ 4 | 6 0 | 0 4 0 0 | * * * 960 * * * | 0 0 2 0 0 1 | 1 0 0 2 . . x3o . x ♦ 6 | 6 3 | 0 2 3 0 | * * * * 1920 * * | 0 0 0 2 0 1 | 0 1 0 2 . . x . o4/3x ♦ 8 | 4 8 | 0 0 4 2 | * * * * * 1440 * | 0 0 0 0 2 1 | 0 0 1 2 . . . o3o4/3x ♦ 8 | 0 12 | 0 0 0 6 | * * * * * * 160 | 0 0 0 0 0 3 | 0 0 0 3 --------------+------+-----------+--------------------+---------------------------------+------------------------+-------------- o3o3x3o . . ♦ 10 | 30 0 | 20 10 0 0 | 5 5 0 0 0 0 0 | 384 * * * * * | 1 1 0 0 o3o3x . . x ♦ 8 | 12 4 | 8 0 6 0 | 2 0 4 0 0 0 0 | * 960 * * * * | 0 1 1 0 . o3x3o3o . ♦ 10 | 30 0 | 10 20 0 0 | 0 5 0 5 0 0 0 | * * 384 * * * | 1 0 0 1 . o3x3o . x ♦ 12 | 24 6 | 8 8 12 0 | 0 2 4 0 4 0 0 | * * * 960 * * | 0 1 0 1 . o3x . o4/3x ♦ 12 | 12 12 | 4 0 12 3 | 0 0 4 0 0 3 0 | * * * * 960 * | 0 0 1 1 . . x3o3o4/3x ♦ 64 | 96 96 | 0 64 96 48 | 0 0 0 16 32 24 8 | * * * * * 60 | 0 0 0 2 --------------+------+-----------+--------------------+---------------------------------+------------------------+-------------- o3o3x3o3o . ♦ 20 | 90 0 | 60 60 0 0 | 15 30 0 15 0 0 0 | 6 0 6 0 0 0 | 64 * * * o3o3x3o . x ♦ 20 | 60 10 | 40 20 30 0 | 10 10 20 0 10 0 0 | 2 5 0 5 0 0 | * 192 * * o3o3x . o4/3x ♦ 16 | 24 16 | 16 0 24 4 | 4 0 16 0 0 6 0 | 0 4 0 0 4 0 | * * 240 * . o3x3o3o4/3x ♦ 320 | 960 480 | 320 640 960 240 | 0 160 320 160 320 240 40 | 0 0 32 80 80 10 | * * * 12
© 2004-2025 | top of page |