Acronym quacpot
Name quasicelliprismated triacontiditeron
Circumradius sqrt[19-10 sqrt(2)]/2 = 1.102028
Coordinates ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign

As abstract polytope quacpot is isomorphic to capt, thereby replacing octagrams by octagons, resp. quith by tic and stop by op, resp. quitit by tat, quithip by ticcup, and tistodip by todip.


Incidence matrix according to Dynkin symbol

x3o3o3x4/3x

. . . .   . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
------------+-----+-------------+---------------------+----------------------------+---------------
x . . .   . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
. . . x   . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
. . . .   x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o . .   . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x . . x   . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x . . .   x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
. . o3x   . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
. . . x4/3x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o3o .   .    4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3o . x   .    6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3o . .   x    6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x . o3x   .    6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x . . x4/3x   16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
. o3o3x   .    4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
. . o3x4/3x   24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o3o3x   .   20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3o3o .   x    8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3o . x4/3x   24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x . o3x4/3x   48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
. o3o3x4/3x   64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10

© 2004-2019
top of page