Acronym quacpot Name quasicelliprismated triacontiditeron Circumradius sqrt[19-10 sqrt(2)]/2 = 1.102028 Coordinates ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign

As abstract polytope quacpot is isomorphic to capt, thereby replacing octagrams by octagons, resp. quith by tic and stop by op, resp. quitit by tat, quithip by ticcup, and tistodip by todip.

Incidence matrix according to Dynkin symbol

```x3o3o3x4/3x

. . . .   . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
------------+-----+-------------+---------------------+----------------------------+---------------
x . . .   . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
. . . x   . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
. . . .   x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o . .   . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x . . x   . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x . . .   x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
. . o3x   . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
. . . x4/3x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o3o .   . ♦   4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3o . x   . ♦   6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3o . .   x ♦   6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x . o3x   . ♦   6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x . . x4/3x ♦  16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
. o3o3x   . ♦   4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
. . o3x4/3x ♦  24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
------------+-----+-------------+---------------------+----------------------------+---------------
x3o3o3x   . ♦  20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3o3o .   x ♦   8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3o . x4/3x ♦  24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x . o3x4/3x ♦  48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
. o3o3x4/3x ♦  64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10
```