Acronym pox srico
Name partially octa-expanded small rhombated icositetrachoron
Face vector 384, 960, 720, 144
Confer
uniform relative:
srico  
related CnRFs:
pibox srico  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

((wx3xx3oq4xo))&#zx   → heights = 0
(tegum sum of (w,x,x)-prit and (x,x,q)-tico)

  o.3o.3o.4o.       | 192   * |   2   2   2  0  0 |  1  2  1  1   2   2  0 | 1  1  1  2
  .o3.o3.o4.o       |   * 192 |   0   0   2  1  1 |  0  0  0  2   2   1  1 | 0  2  1  1
--------------------+---------+-------------------+------------------------+-----------
  .. x. .. ..       |   2   0 | 192   *   *  *  * |  1  1  0  0   1   0  0 | 1  1  0  1
  .. .. .. x.       |   2   0 |   * 192   *  *  * |  0  1  2  0   0   1  0 | 1  0  1  1
  oo3oo3oo4oo  &#x  |   1   1 |   *   * 384  *  * |  0  0  0  1   1   1  0 | 0  1  1  1
  .x .. .. ..       |   0   2 |   *   *   * 96  * |  0  0  0  2   0   0  1 | 0  2  1  0
  .. .x .. ..       |   0   2 |   *   *   *  * 96 |  0  0  0  0   2   0  1 | 0  2  0  1
--------------------+---------+-------------------+------------------------+-----------
  .. x.3o. ..       |   3   0 |   3   0   0  0  0 | 64  *  *  *   *   *  * | 1  1  0  0
  .. x. .. x.       |   4   0 |   2   2   0  0  0 |  * 96  *  *   *   *  * | 1  0  0  1
  .. .. o.4x.       |   4   0 |   0   4   0  0  0 |  *  * 48  *   *   *  * | 1  0  1  0
((wx .. oq ..))&#zx |   2   4 |   0   0   4  2  0 |  *  *  * 96   *   *  * | 0  1  1  0  {(h,H,H)2}
  .. xx .. ..  &#x  |   2   2 |   1   0   2  0  1 |  *  *  *  * 192   *  * | 0  1  0  1
  .. .. .. xo  &#x  |   2   1 |   0   1   2  0  0 |  *  *  *  *   * 192  * | 0  0  1  1
  .x3.x .. ..       |   0   6 |   0   0   0  3  3 |  *  *  *  *   *   * 32 | 0  2  0  0
--------------------+---------+-------------------+------------------------+-----------
  .. x.3o.4x.         24   0 |  24  24   0  0  0 |  8 12  6  0   0   0  0 | 8  *  *  *
((wx3xx3oq ..))&#zx   12  24 |  12   0  24 12 12 |  4  0  0  6  12   0  4 | * 16  *  *
((wx .. oq4xo))&#zx    8   8 |   0   8  16  4  0 |  0  0  2  4   0   8  0 | *  * 24  *
  .. xx .. xo  &#x     4   2 |   2   2   4  0  1 |  0  1  0  0   2   2  0 | *  *  * 96

© 2004-2026
top of page