Acronym pex thex
Name partially (mono-)expanded thex
Circumradius ...
Lace city
in approx. ASCII-art
    o4o o4x   o4x o4o    
                         
o4o     o4u   o4u     o4o
                         
o4x o4u q4x   q4x o4u o4x
                         
o4o     o4u   o4u     o4o
                         
    o4o o4x   o4x o4o    
Dihedral angles
  • at {6} between hip and tut:   150°
  • at {4} between esquidpy and hip:   arccos[-1/sqrt(3)] = 125.264390°
  • at {3} between esquidpy and tut:   120°
  • at {3} between oct and tut:   120°
  • at {6} between tut and tut:   120°
  • at {4} between hip and hip:   arccos(-1/3) = 109.471221°
Face vector 72, 180, 140, 32
Confer
uniform relative:
thex   prit  
segmentochora:
tope  
related CRFs:
octum   pabex thex   pacprit  
general polytopal classes:
partial Stott expansions  

Incidence matrix according to Dynkin symbol

xuxxux3ooxxoo4oooooo&#xt   → all but central height = 1/sqrt(2) = 0.707107
                             central height = 1
(oct || pseudo u-oct || pseudo toe || pseudo toe || pseudo u-oct || oct)

o.....3o.....4o.....      & | 12  *  * |  4  1  0  0  0  0 |  4  4  0  0  0  0 | 1  4 0 0
.o....3.o....4.o....      & |  * 12  * |  0  1  4  0  0  0 |  0  4  4  0  0  0 | 0  4 1 0
..o...3..o...4..o...      & |  *  * 48 |  0  0  1  1  2  1 |  0  1  2  2  1  2 | 0  2 1 2
----------------------------+----------+-------------------+-------------------+---------
x..... ...... ......      & |  2  0  0 | 24  *  *  *  *  * |  2  1  0  0  0  0 | 1  2 0 0
oo....3oo....4oo....&#x   & |  1  1  0 |  * 12  *  *  *  * |  0  4  0  0  0  0 | 0  4 0 0
.oo...3.oo...4.oo...&#x   & |  0  1  1 |  *  * 48  *  *  * |  0  1  2  0  0  0 | 0  2 1 0
..x... ...... ......      & |  0  0  2 |  *  *  * 24  *  * |  0  1  0  2  0  0 | 0  2 0 2
...... ..x... ......      & |  0  0  2 |  *  *  *  * 48  * |  0  0  1  1  0  1 | 0  1 1 1
..oo..3..oo..4..oo..&#x     |  0  0  2 |  *  *  *  *  * 24 |  0  0  0  0  1  2 | 0  0 1 2
----------------------------+----------+-------------------+-------------------+---------
x.....3o..... ......      & |  3  0  0 |  3  0  0  0  0  0 | 16  *  *  *  *  * | 1  1 0 0
xux... ...... ......&#xt  & |  2  2  2 |  1  2  2  1  0  0 |  * 24  *  *  *  * | 0  2 0 0
...... .ox... ......&#x   & |  0  1  2 |  0  0  2  0  1  0 |  *  * 48  *  *  * | 0  1 1 0
..x...3..x... ......      & |  0  0  6 |  0  0  0  3  3  0 |  *  *  * 16  *  * | 0  1 0 1
..xx.. ...... ......&#x     |  0  0  4 |  0  0  0  2  0  2 |  *  *  *  * 12  * | 0  0 0 2
...... ..xx.. ......&#x     |  0  0  4 |  0  0  0  0  2  2 |  *  *  *  *  * 24 | 0  0 1 1
----------------------------+----------+-------------------+-------------------+---------
x.....3o.....4o.....      &   6  0  0 | 12  0  0  0  0  0 |  8  0  0  0  0  0 | 2  * * *
xux...3oox... ......&#xt  &   3  3  6 |  3  3  6  3  3  0 |  1  3  3  1  0  0 | * 16 * *
...... .oxxo.4.oooo.&#xt      0  2  8 |  0  0  8  0  8  4 |  0  0  8  0  0  4 | *  * 6 *
..xx..3..xx.. ......&#x       0  0 12 |  0  0  0  6  6  6 |  0  0  0  2  3  3 | *  * * 8

Xwx xux3oox4ooo&#zxt   → where: X = w+q = x+2q

o.. o..3o..4o..     | 12  *  * |  4  1  0  0  0  0 |  4  4  0  0  0  0 | 1  4 0 0
.o. .o.3.o.4.o.     |  * 12  * |  0  1  4  0  0  0 |  0  4  4  0  0  0 | 0  4 1 0
..o ..o3..o4..o     |  *  * 48 |  0  0  1  1  1  2 |  0  1  2  1  2  2 | 0  2 1 2
--------------------+----------+-------------------+-------------------+---------
... x.. ... ...     |  2  0  0 | 24  *  *  *  *  * |  2  1  0  0  0  0 | 1  2 0 0
oo. oo.3oo.4oo.&#x  |  1  1  0 |  * 12  *  *  *  * |  0  4  0  0  0  0 | 0  4 0 0
.oo .oo3.oo4.oo&#x  |  0  1  1 |  *  * 48  *  *  * |  0  1  2  0  0  0 | 0  2 1 0
..x ... ... ...     |  0  0  2 |  *  *  * 24  *  * |  0  0  0  1  2  0 | 0  0 1 2
... ..x ... ...     |  0  0  2 |  *  *  *  * 24  * |  0  1  0  0  0  2 | 0  2 0 2
... ... ..x ...     |  0  0  2 |  *  *  *  *  * 48 |  0  0  1  0  1  1 | 0  1 1 1
--------------------+----------+-------------------+-------------------+---------
... x..3o.. ...     |  3  0  0 |  3  0  0  0  0  0 | 16  *  *  *  *  * | 1  1 0 0
... xux ... ...&#xt |  2  2  2 |  1  2  2  0  1  0 |  * 24  *  *  *  * | 0  2 0 0
... ... .ox ...&#x  |  0  1  2 |  0  0  2  0  0  1 |  *  * 48  *  *  * | 0  1 1 0
..x ..x ... ...     |  0  0  4 |  0  0  0  2  2  0 |  *  *  * 12  *  * | 0  0 0 2
..x ... ..x ...     |  0  0  4 |  0  0  0  2  0  2 |  *  *  *  * 24  * | 0  0 1 1
... ..x3..x ...     |  0  0  6 |  0  0  0  0  3  3 |  *  *  *  *  * 16 | 0  1 0 1
--------------------+----------+-------------------+-------------------+---------
... x..3o..4o..       6  0  0 | 12  0  0  0  0  0 |  8  0  0  0  0  0 | 2  * * *
... xux3oox ...&#xt   3  3  6 |  3  3  6  0  3  3 |  1  3  3  0  0  1 | * 16 * *
.wx ... .ox4.oo&#zx   0  2  8 |  0  0  8  4  0  8 |  0  0  8  0  4  0 | *  * 6 *
..x ..x3..x ...       0  0 12 |  0  0  0  6  6  6 |  0  0  0  3  3  2 | *  * * 8

© 2004-2024
top of page