Acronym | pex thex |
Name | partially (mono-)expanded thex |
Circumradius | ... |
Lace city in approx. ASCII-art |
o4o o4x o4x o4o o4o o4u o4u o4o o4x o4u q4x q4x o4u o4x o4o o4u o4u o4o o4o o4x o4x o4o |
Dihedral angles | |
Face vector | 72, 180, 140, 32 |
Confer |
|
Incidence matrix according to Dynkin symbol
xuxxux3ooxxoo4oooooo&#xt → all but central height = 1/sqrt(2) = 0.707107 central height = 1 (oct || pseudo u-oct || pseudo toe || pseudo toe || pseudo u-oct || oct) o.....3o.....4o..... & | 12 * * | 4 1 0 0 0 0 | 4 4 0 0 0 0 | 1 4 0 0 .o....3.o....4.o.... & | * 12 * | 0 1 4 0 0 0 | 0 4 4 0 0 0 | 0 4 1 0 ..o...3..o...4..o... & | * * 48 | 0 0 1 1 2 1 | 0 1 2 2 1 2 | 0 2 1 2 ----------------------------+----------+-------------------+-------------------+--------- x..... ...... ...... & | 2 0 0 | 24 * * * * * | 2 1 0 0 0 0 | 1 2 0 0 oo....3oo....4oo....&#x & | 1 1 0 | * 12 * * * * | 0 4 0 0 0 0 | 0 4 0 0 .oo...3.oo...4.oo...&#x & | 0 1 1 | * * 48 * * * | 0 1 2 0 0 0 | 0 2 1 0 ..x... ...... ...... & | 0 0 2 | * * * 24 * * | 0 1 0 2 0 0 | 0 2 0 2 ...... ..x... ...... & | 0 0 2 | * * * * 48 * | 0 0 1 1 0 1 | 0 1 1 1 ..oo..3..oo..4..oo..&#x | 0 0 2 | * * * * * 24 | 0 0 0 0 1 2 | 0 0 1 2 ----------------------------+----------+-------------------+-------------------+--------- x.....3o..... ...... & | 3 0 0 | 3 0 0 0 0 0 | 16 * * * * * | 1 1 0 0 xux... ...... ......&#xt & | 2 2 2 | 1 2 2 1 0 0 | * 24 * * * * | 0 2 0 0 ...... .ox... ......&#x & | 0 1 2 | 0 0 2 0 1 0 | * * 48 * * * | 0 1 1 0 ..x...3..x... ...... & | 0 0 6 | 0 0 0 3 3 0 | * * * 16 * * | 0 1 0 1 ..xx.. ...... ......&#x | 0 0 4 | 0 0 0 2 0 2 | * * * * 12 * | 0 0 0 2 ...... ..xx.. ......&#x | 0 0 4 | 0 0 0 0 2 2 | * * * * * 24 | 0 0 1 1 ----------------------------+----------+-------------------+-------------------+--------- x.....3o.....4o..... & ♦ 6 0 0 | 12 0 0 0 0 0 | 8 0 0 0 0 0 | 2 * * * xux...3oox... ......&#xt & ♦ 3 3 6 | 3 3 6 3 3 0 | 1 3 3 1 0 0 | * 16 * * ...... .oxxo.4.oooo.&#xt ♦ 0 2 8 | 0 0 8 0 8 4 | 0 0 8 0 0 4 | * * 6 * ..xx..3..xx.. ......&#x ♦ 0 0 12 | 0 0 0 6 6 6 | 0 0 0 2 3 3 | * * * 8
Xwx xux3oox4ooo&#zxt → where: X = w+q = x+2q o.. o..3o..4o.. | 12 * * | 4 1 0 0 0 0 | 4 4 0 0 0 0 | 1 4 0 0 .o. .o.3.o.4.o. | * 12 * | 0 1 4 0 0 0 | 0 4 4 0 0 0 | 0 4 1 0 ..o ..o3..o4..o | * * 48 | 0 0 1 1 1 2 | 0 1 2 1 2 2 | 0 2 1 2 --------------------+----------+-------------------+-------------------+--------- ... x.. ... ... | 2 0 0 | 24 * * * * * | 2 1 0 0 0 0 | 1 2 0 0 oo. oo.3oo.4oo.&#x | 1 1 0 | * 12 * * * * | 0 4 0 0 0 0 | 0 4 0 0 .oo .oo3.oo4.oo&#x | 0 1 1 | * * 48 * * * | 0 1 2 0 0 0 | 0 2 1 0 ..x ... ... ... | 0 0 2 | * * * 24 * * | 0 0 0 1 2 0 | 0 0 1 2 ... ..x ... ... | 0 0 2 | * * * * 24 * | 0 1 0 0 0 2 | 0 2 0 2 ... ... ..x ... | 0 0 2 | * * * * * 48 | 0 0 1 0 1 1 | 0 1 1 1 --------------------+----------+-------------------+-------------------+--------- ... x..3o.. ... | 3 0 0 | 3 0 0 0 0 0 | 16 * * * * * | 1 1 0 0 ... xux ... ...&#xt | 2 2 2 | 1 2 2 0 1 0 | * 24 * * * * | 0 2 0 0 ... ... .ox ...&#x | 0 1 2 | 0 0 2 0 0 1 | * * 48 * * * | 0 1 1 0 ..x ..x ... ... | 0 0 4 | 0 0 0 2 2 0 | * * * 12 * * | 0 0 0 2 ..x ... ..x ... | 0 0 4 | 0 0 0 2 0 2 | * * * * 24 * | 0 0 1 1 ... ..x3..x ... | 0 0 6 | 0 0 0 0 3 3 | * * * * * 16 | 0 1 0 1 --------------------+----------+-------------------+-------------------+--------- ... x..3o..4o.. ♦ 6 0 0 | 12 0 0 0 0 0 | 8 0 0 0 0 0 | 2 * * * ... xux3oox ...&#xt ♦ 3 3 6 | 3 3 6 0 3 3 | 1 3 3 0 0 1 | * 16 * * .wx ... .ox4.oo&#zx ♦ 0 2 8 | 0 0 8 4 0 8 | 0 0 8 0 4 0 | * * 6 * ..x ..x3..x ... ♦ 0 0 12 | 0 0 0 6 6 6 | 0 0 0 3 3 2 | * * * 8
© 2004-2025 | top of page |