Acronym pabex thex Name partially biexpanded truncated hexadecachoron,partially bicontracted prismatorhombated tesseract Circumradius ... Lace cityin approx. ASCII-art ``` x4o x4x x4o A B A x4o x4u x4o A C A x4x x4u w4x x4u x4x B C D C B x4o x4u x4o A C A x4o x4x x4o A B A ``` ``` o4o o4x o4x o4o o4o o4u o4u o4o o4x o4u q4x q4x o4u o4x o4x o4u q4x q4x o4u o4x o4o o4u o4u o4o o4o o4x o4x o4o ``` Dihedral angles at {6} between hip and tut:   150° at {4} between cube and hip:   arccos(-sqrt[2/3]) = 144.735610° at {4} between cube and squobcu:   135° at {4} between esquidpy and squobcu:   arccos(-1/sqrt(3)) = 125.264390° at {4} between hip and squobcu:   arccos(-1/sqrt(3)) = 125.264390° at {3} between esquidpy and tut:   120° at {3} between squobcu and tut:   120° at {6} between tut and tut:   120° at {4} between hip and hip:   arccos(-1/3) = 109.471221° Confer uniform relative: thex   prit   related CRFs: pex thex   pacprit   general polytopal classes: partial Stott expansions

This CRF polychoron can be obtained from prit by splitting into 3 segments, rejecting the central gircope, recombining the outer parts, and then apply the same operation to that bicupola in an orthogonal direction – thus resulting in a partial Stott contraction (cf. esp. the lace city display of prit).

Conversely it can be obtained by 2 orthogonally applied axial partial Stott expansions based on thex.

Incidence matrix

```32  *  * * |  2  1  2  0  0  0  0  0  0 0 | 1  2  2  2  1  0  0  0  0 | 1 1  2  1 0  (A)
* 32  * * |  0  0  2  1  1  1  0  0  0 0 | 0  0  2  2  2  1  1  0  0 | 1 0  2  2 0  (B)
*  * 32 * |  0  0  0  0  0  1  1  2  1 0 | 0  0  2  0  0  1  1  2  2 | 0 0  2  2 1  (C)
*  *  * 8 |  0  0  0  0  0  0  0  0  4 1 | 0  0  0  0  0  4  0  0  4 | 0 0  0  4 1  (D)
-----------+------------------------------+---------------------------+------------
2  0  0 0 | 32  *  *  *  *  *  *  *  * * | 1  1  0  1  0  0  0  0  0 | 1 1  1  0 0  (within each A)
2  0  0 0 |  * 16  *  *  *  *  *  *  * * | 0  2  2  0  0  0  0  0  0 | 0 1  2  1 0  (connecting A's)
1  1  0 0 |  *  * 64  *  *  *  *  *  * * | 0  0  1  1  1  0  0  0  0 | 1 0  1  1 0
0  2  0 0 |  *  *  * 16  *  *  *  *  * * | 0  0  0  2  0  0  1  0  0 | 1 0  2  0 0  (x4.)
0  2  0 0 |  *  *  *  * 16  *  *  *  * * | 0  0  0  0  2  1  0  0  0 | 1 0  0  2 0  (.4x)
0  1  1 0 |  *  *  *  *  * 32  *  *  * * | 0  0  2  0  0  1  1  0  0 | 0 0  2  2 0
0  0  2 0 |  *  *  *  *  *  * 16  *  * * | 0  0  0  0  0  0  1  2  0 | 0 0  2  0 1  (within each C)
0  0  2 0 |  *  *  *  *  *  *  * 32  * * | 0  0  1  0  0  0  0  1  1 | 0 0  1  1 1  (connecting C's)
0  0  1 1 |  *  *  *  *  *  *  *  * 32 * | 0  0  0  0  0  1  0  0  2 | 0 0  0  2 1
0  0  0 2 |  *  *  *  *  *  *  *  *  * 4 | 0  0  0  0  0  4  0  0  0 | 0 0  0  4 0
-----------+------------------------------+---------------------------+------------
4  0  0 0 |  4  0  0  0  0  0  0  0  0 0 | 8  *  *  *  *  *  *  *  * | 1 1  0  0 0
4  0  0 0 |  2  2  0  0  0  0  0  0  0 0 | * 16  *  *  *  *  *  *  * | 0 1  1  0 0
2  2  2 0 |  0  1  2  0  0  2  0  1  0 0 | *  * 32  *  *  *  *  *  * | 0 0  1  1 0
2  2  0 0 |  1  0  2  1  0  0  0  0  0 0 | *  *  * 32  *  *  *  *  * | 1 0  1  0 0
1  2  0 0 |  0  0  2  0  1  0  0  0  0 0 | *  *  *  * 32  *  *  *  * | 1 0  0  1 0
0  2  2 2 |  0  0  0  0  1  2  0  0  2 1 | *  *  *  *  * 16  *  *  * | 0 0  0  2 0
0  2  2 0 |  0  0  0  1  0  2  1  0  0 0 | *  *  *  *  *  * 16  *  * | 0 0  2  0 0
0  0  4 0 |  0  0  0  0  0  0  2  2  0 0 | *  *  *  *  *  *  * 16  * | 0 0  1  0 1
0  0  2 1 |  0  0  0  0  0  0  0  1  2 0 | *  *  *  *  *  *  *  * 32 | 0 0  0  1 1
-----------+------------------------------+---------------------------+------------
8  8  0 0 |  8  0 16  4  4  0  0  0  0 0 | 2  0  0  8  8  0  0  0  0 | 4 *  *  * *  squobcu
8  0  0 0 |  8  4  0  0  0  0  0  0  0 0 | 2  4  0  0  0  0  0  0  0 | * 4  *  * *  cube
4  4  4 0 |  2  2  4  2  0  4  2  2  0 0 | 0  1  2  2  0  0  2  1  0 | * * 16  * *  hip
2  4  4 2 |  0  1  4  0  2  4  0  2  4 1 | 0  0  2  0  2  2  0  0  2 | * *  * 16 *  tut
0  0  8 2 |  0  0  0  0  0  0  4  8  8 0 | 0  0  0  0  0  0  0  4  8 | * *  *  * 4  esquidpy
```