Acronym pabex thex
Name partially biexpanded truncated hexadecachoron,
partially bicontracted prismatorhombated tesseract
Circumradius ...
Lace city
in approx. ASCII-art
    x4o x4x x4o    
      A   B   A    
x4o     x4u     x4o
  A       C       A
x4x x4u w4x x4u x4x
  B   C   D   C   B
x4o     x4u     x4o
  A       C       A
    x4o x4x x4o    
      A   B   A    
    o4o o4x   o4x o4o    
                         
o4o     o4u   o4u     o4o
                         
o4x o4u q4x   q4x o4u o4x
                         
                         
o4x o4u q4x   q4x o4u o4x
                         
o4o     o4u   o4u     o4o
                         
    o4o o4x   o4x o4o    
Dihedral angles
  • at {6} between hip and tut:   150°
  • at {4} between cube and hip:   arccos(-sqrt[2/3]) = 144.735610°
  • at {4} between cube and squobcu:   135°
  • at {4} between esquidpy and squobcu:   arccos(-1/sqrt(3)) = 125.264390°
  • at {4} between hip and squobcu:   arccos(-1/sqrt(3)) = 125.264390°
  • at {3} between esquidpy and tut:   120°
  • at {3} between squobcu and tut:   120°
  • at {6} between tut and tut:   120°
  • at {4} between hip and hip:   arccos(-1/3) = 109.471221°
Confer
uniform relative:
thex   prit  
related CRFs:
pex thex   pacprit  
general polytopal classes:
partial Stott expansions  

This CRF polychoron can be obtained from prit by splitting into 3 segments, rejecting the central gircope, recombining the outer parts, and then apply the same operation to that bicupola in an orthogonal direction – thus resulting in a partial Stott contraction (cf. esp. the lace city display of prit).

Conversely it can be obtained by 2 orthogonally applied axial partial Stott expansions based on thex.


Incidence matrix

32  *  * * |  2  1  2  0  0  0  0  0  0 0 | 1  2  2  2  1  0  0  0  0 | 1 1  2  1 0  (A)
 * 32  * * |  0  0  2  1  1  1  0  0  0 0 | 0  0  2  2  2  1  1  0  0 | 1 0  2  2 0  (B)
 *  * 32 * |  0  0  0  0  0  1  1  2  1 0 | 0  0  2  0  0  1  1  2  2 | 0 0  2  2 1  (C)
 *  *  * 8 |  0  0  0  0  0  0  0  0  4 1 | 0  0  0  0  0  4  0  0  4 | 0 0  0  4 1  (D)
-----------+------------------------------+---------------------------+------------
 2  0  0 0 | 32  *  *  *  *  *  *  *  * * | 1  1  0  1  0  0  0  0  0 | 1 1  1  0 0  (within each A)
 2  0  0 0 |  * 16  *  *  *  *  *  *  * * | 0  2  2  0  0  0  0  0  0 | 0 1  2  1 0  (connecting A's)
 1  1  0 0 |  *  * 64  *  *  *  *  *  * * | 0  0  1  1  1  0  0  0  0 | 1 0  1  1 0
 0  2  0 0 |  *  *  * 16  *  *  *  *  * * | 0  0  0  2  0  0  1  0  0 | 1 0  2  0 0  (x4.)
 0  2  0 0 |  *  *  *  * 16  *  *  *  * * | 0  0  0  0  2  1  0  0  0 | 1 0  0  2 0  (.4x)
 0  1  1 0 |  *  *  *  *  * 32  *  *  * * | 0  0  2  0  0  1  1  0  0 | 0 0  2  2 0
 0  0  2 0 |  *  *  *  *  *  * 16  *  * * | 0  0  0  0  0  0  1  2  0 | 0 0  2  0 1  (within each C)
 0  0  2 0 |  *  *  *  *  *  *  * 32  * * | 0  0  1  0  0  0  0  1  1 | 0 0  1  1 1  (connecting C's)
 0  0  1 1 |  *  *  *  *  *  *  *  * 32 * | 0  0  0  0  0  1  0  0  2 | 0 0  0  2 1
 0  0  0 2 |  *  *  *  *  *  *  *  *  * 4 | 0  0  0  0  0  4  0  0  0 | 0 0  0  4 0
-----------+------------------------------+---------------------------+------------
 4  0  0 0 |  4  0  0  0  0  0  0  0  0 0 | 8  *  *  *  *  *  *  *  * | 1 1  0  0 0
 4  0  0 0 |  2  2  0  0  0  0  0  0  0 0 | * 16  *  *  *  *  *  *  * | 0 1  1  0 0
 2  2  2 0 |  0  1  2  0  0  2  0  1  0 0 | *  * 32  *  *  *  *  *  * | 0 0  1  1 0
 2  2  0 0 |  1  0  2  1  0  0  0  0  0 0 | *  *  * 32  *  *  *  *  * | 1 0  1  0 0
 1  2  0 0 |  0  0  2  0  1  0  0  0  0 0 | *  *  *  * 32  *  *  *  * | 1 0  0  1 0
 0  2  2 2 |  0  0  0  0  1  2  0  0  2 1 | *  *  *  *  * 16  *  *  * | 0 0  0  2 0
 0  2  2 0 |  0  0  0  1  0  2  1  0  0 0 | *  *  *  *  *  * 16  *  * | 0 0  2  0 0
 0  0  4 0 |  0  0  0  0  0  0  2  2  0 0 | *  *  *  *  *  *  * 16  * | 0 0  1  0 1
 0  0  2 1 |  0  0  0  0  0  0  0  1  2 0 | *  *  *  *  *  *  *  * 32 | 0 0  0  1 1
-----------+------------------------------+---------------------------+------------
 8  8  0 0 |  8  0 16  4  4  0  0  0  0 0 | 2  0  0  8  8  0  0  0  0 | 4 *  *  * *  squobcu
 8  0  0 0 |  8  4  0  0  0  0  0  0  0 0 | 2  4  0  0  0  0  0  0  0 | * 4  *  * *  cube
 4  4  4 0 |  2  2  4  2  0  4  2  2  0 0 | 0  1  2  2  0  0  2  1  0 | * * 16  * *  hip
 2  4  4 2 |  0  1  4  0  2  4  0  2  4 1 | 0  0  2  0  2  2  0  0  2 | * *  * 16 *  tut
 0  0  8 2 |  0  0  0  0  0  0  4  8  8 0 | 0  0  0  0  0  0  0  4  8 | * *  *  * 4  esquidpy

© 2004-2018
top of page