Acronym pabex thex
Name partially biexpanded truncated hexadecachoron,
partially bicontracted prismatorhombated tesseract
Circumradius ...
Lace city
in approx. ASCII-art
    x4o x4x x4o    
                   
x4o     x4u     x4o
                   
x4x x4u w4x x4u x4x
                   
x4o     x4u     x4o
                   
    x4o x4x x4o    
    o4o o4x   o4x o4o    
                         
o4o     o4u   o4u     o4o
                         
o4x o4u q4x   q4x o4u o4x
                         
                         
o4x o4u q4x   q4x o4u o4x
                         
o4o     o4u   o4u     o4o
                         
    o4o o4x   o4x o4o    
Dihedral angles
  • at {6} between hip and tut:   150°
  • at {4} between cube and hip:   arccos[-sqrt(2/3)] = 144.735610°
  • at {4} between cube and squobcu:   135°
  • at {4} between esquidpy and squobcu:   arccos[-1/sqrt(3)] = 125.264390°
  • at {4} between hip and squobcu:   arccos[-1/sqrt(3)] = 125.264390°
  • at {3} between esquidpy and tut:   120°
  • at {3} between squobcu and tut:   120°
  • at {6} between tut and tut:   120°
  • at {4} between hip and hip:   arccos(-1/3) = 109.471221°
Face vector 104, 260, 200, 44
Confer
uniform relative:
thex   prit  
related CRFs:
pex thex   pacprit  
general polytopal classes:
partial Stott expansions  

This CRF polychoron can be obtained from prit by splitting into 3 segments, rejecting the central gircope, recombining the outer parts, and then apply the same operation to that bicupola in an orthogonal direction – thus resulting in a partial Stott contraction (cf. esp. the lace city display of prit).

Conversely it can be obtained by 2 orthogonally applied axial partial Stott expansions based on thex.


Incidence matrix according to Dynkin symbol

xxxw4oxux qooo4xuxo&#zxt

o...4o... o...4o...     | 32  *  * * |  2  1  2  0  0  0  0  0  0 0 | 1  2  2  1  2  0  0  0  0 | 1 1  2  1 0
.o..4.o.. .o..4.o..     |  * 32  * * |  0  0  2  1  1  1  0  0  0 0 | 0  0  2  2  2  1  1  0  0 | 0 1  2  2 0
..o.4..o. ..o.4..o.     |  *  * 32 * |  0  0  0  0  0  1  1  2  1 0 | 0  0  0  0  2  1  1  2  2 | 0 0  2  2 1
...o4...o ...o4...o     |  *  *  * 8 |  0  0  0  0  0  0  0  0  4 1 | 0  0  0  0  0  0  4  0  4 | 0 0  0  4 1
------------------------+------------+------------------------------+---------------------------+------------
x... .... .... ....     |  2  0  0 0 | 32  *  *  *  *  *  *  *  * * | 1  1  1  0  0  0  0  0  0 | 1 1  1  0 0
.... .... .... x...     |  2  0  0 0 |  * 16  *  *  *  *  *  *  * * | 0  2  0  0  2  0  0  0  0 | 1 0  2  1 0
oo..4oo.. oo..4oo..&#x  |  1  1  0 0 |  *  * 64  *  *  *  *  *  * * | 0  0  1  1  1  0  0  0  0 | 0 1  1  1 0
.x.. .... .... ....     |  0  2  0 0 |  *  *  * 16  *  *  *  *  * * | 0  0  2  0  0  1  0  0  0 | 0 1  2  0 0
.... .x.. .... ....     |  0  2  0 0 |  *  *  *  * 16  *  *  *  * * | 0  0  0  2  0  0  1  0  0 | 0 1  0  2 0
.oo.4.oo. .oo.4.oo.&#x  |  0  1  1 0 |  *  *  *  *  * 32  *  *  * * | 0  0  0  0  2  1  1  0  0 | 0 0  2  2 0
..x. .... .... ....     |  0  0  2 0 |  *  *  *  *  *  * 16  *  * * | 0  0  0  0  0  1  0  2  0 | 0 0  2  0 1
.... .... .... ..x.     |  0  0  2 0 |  *  *  *  *  *  *  * 32  * * | 0  0  0  0  1  0  0  1  1 | 0 0  1  1 1
..oo4..oo ..oo4..oo&#x  |  0  0  1 1 |  *  *  *  *  *  *  *  * 32 * | 0  0  0  0  0  0  1  0  2 | 0 0  0  2 1
.... ...x .... ....     |  0  0  0 2 |  *  *  *  *  *  *  *  *  * 4 | 0  0  0  0  0  0  4  0  0 | 0 0  0  4 0
------------------------+------------+------------------------------+---------------------------+------------
x...4o... .... ....     |  4  0  0 0 |  4  0  0  0  0  0  0  0  0 0 | 8  *  *  *  *  *  *  *  * | 1 1  0  0 0
x... .... .... x...     |  4  0  0 0 |  2  2  0  0  0  0  0  0  0 0 | * 16  *  *  *  *  *  *  * | 1 0  1  0 0
xx.. .... .... ....&#x  |  2  2  0 0 |  1  0  2  1  0  0  0  0  0 0 | *  * 32  *  *  *  *  *  * | 0 1  1  0 0
.... ox.. .... ....&#x  |  1  2  0 0 |  0  0  2  0  1  0  0  0  0 0 | *  *  * 32  *  *  *  *  * | 0 1  0  1 0
.... .... .... xux.&#xt |  2  2  2 0 |  0  1  2  0  0  2  0  1  0 0 | *  *  *  * 32  *  *  *  * | 0 0  1  1 0
.xx. .... .... ....&#x  |  0  2  2 0 |  0  0  0  1  0  2  1  0  0 0 | *  *  *  *  * 16  *  *  * | 0 0  2  0 0
.... .xux .... ....&#xt |  0  2  2 2 |  0  0  0  0  1  2  0  0  2 1 | *  *  *  *  *  * 16  *  * | 0 0  0  2 0
.... .... ..o.4..x.     |  0  0  4 0 |  0  0  0  0  0  0  2  2  0 0 | *  *  *  *  *  *  * 16  * | 0 0  1  0 1
.... .... .... ..xo&#x  |  0  0  2 1 |  0  0  0  0  0  0  0  1  2 0 | *  *  *  *  *  *  *  * 32 | 0 0  0  1 1
------------------------+------------+------------------------------+---------------------------+------------
x...4o... .... x...       8  0  0 0 |  8  4  0  0  0  0  0  0  0 0 | 2  4  0  0  0  0  0  0  0 | 4 *  *  * *
xx..4ox.. qo.. ....&#zx   8  8  0 0 |  8  0 16  4  4  0  0  0  0 0 | 2  0  8  8  0  0  0  0  0 | * 4  *  * *
xxx. .... .... xux.&#xt   4  4  4 0 |  2  2  4  2  0  4  2  2  0 0 | 0  1  2  0  2  2  0  1  0 | * * 16  * *
.... oxux .... xuxo&#xt   2  4  4 2 |  0  1  4  0  2  4  0  2  4 1 | 0  0  0  2  2  0  2  0  2 | * *  * 16 *
..xw .... ..oo4..xo&#zx   0  0  8 2 |  0  0  0  0  0  0  4  8  8 0 | 0  0  0  0  0  0  0  4  8 | * *  *  * 4

© 2004-2024
top of page