Acronym ... Name partially extended hyperbolic o4o3x3o3*b tesselation Confer related hyperbolic polytopes: o4o3x3o3*b   pac-x4o3x3o3*b   x4o3x3o3*b   general polytopal classes: partial Stott expansions   scaliform

This non-compact hyperbolic tesselation uses the euclidean tiling trat in the sense of an infinite horohedron as cell.

It can be derived as further partial Stott contraction of pac-x4o3x3o3*b, contracting the lacing heights of an other one of the trip classes (e.g. the one marked "v" below).

A last contraction, e.g. of the "g" edges, then results then in o4o3x3o3*b. The other way round, it thus could be said to be its partial expansion.

Incidence matrix

```pex-o4o3x3o3*b   (N,M → ∞)

6NM |    8    4    4   1 |    8   12   4   2   2 |   5   4  4
----+--------------------+-----------------------+-----------
2 | 24NM    *    *   * |    1    1   1   0   0 |   1   1  1  r
2 |    * 12NM    *   * |    0    2   0   1   0 |   1   0  2  y
2 |    *    * 12NM   * |    0    2   0   0   1 |   1   0  2  b
2 |    *    *    * 3NM |    8    0   0   0   0 |   4   4  0  g
----+--------------------+-----------------------+-----------
4 |    2    0    0   2 | 12NM    *   *   *   * |   1   1  0  rg
3 |    1    1    1   0 |    * 24NM   *   *   * |   1   0  1  ryb
3 |    3    0    0   0 |    *    * 8NM   *   * |   0   1  1  r
3 |    0    3    0   0 |    *    *   * 4NM   * |   0   0  2  y
3 |    0    0    3   0 |    *    *   *   * 4NM |   0   0  2  b
----+--------------------+-----------------------+-----------
10 |    8    4    4   4 |    4    8   0   0   0 | 3NM   *  *  esquidpy
6 |    6    0    0   3 |    3    0   2   0   0 |   * 4NM  *  r-trip
3M |   3M   3M   3M   0 |    0   3M   M   M   M |   *   * 8N  trat
```