Acronym noqrant Name penteractiquasirhombated penteractitriacontaditeron Field of sections ` ©` Circumradius sqrt[25-8 sqrt(2)]/2 = 1.849749 Vertex figure ` ©` Colonel of regiment (is itself locally convex – no other uniform polyteral members) Externallinks

As abstract polytope noqrant is isomorphic to nurrant, thereby interchanging the roles of octagrams and octagons, resp. replacing quitco by girco and op by stop, resp. gaqrit by grit, todip by tistodipand thaquitpath by thatpath.

Incidence matrix according to Dynkin symbol

```o3x3x3x4x4/3*c

. . . . .      | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2  2   2  1 |  1  1  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
. x . . .      |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1  1   1  0 |  1  1  1  1
. . x . .      |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2  2   0  1 |  1  1  0  2
. . . x .      |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2  0   2  1 |  1  0  1  2
. . . . x      |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0  2   2  1 |  0  1  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x . . .      |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0  0   0  0 |  1  1  1  0
. x3x . .      |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1  1   0  0 |  1  1  0  1
. x . x .      |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1  0   1  0 |  1  0  1  1
. x . . x      |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0  1   1  0 |  0  1  1  1
. . x3x .      |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2  0   0  1 |  1  0  0  2
. . x . x4/3*c |    8 |    0   4   0   4 |   *   *   *   *   * 240   * |   0   0   0   0  2   0  1 |  0  1  0  2
. . . x4x      |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0  0   2  1 |  0  0  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x3x . .      ♦   12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *  *   *  * |  1  1  0  0
o3x . x .      ♦    6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *  *   *  * |  1  0  1  0
o3x . . x      ♦    6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *  *   *  * |  0  1  1  0
. x3x3x .      ♦   24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160  *   *  * |  1  0  0  1
. x3x . x4/3*c ♦   48 |   24  24   0  24 |   0   8   0  12   0   6   0 |   *   *   *   * 80   *  * |  0  1  0  1
. x . x4x      ♦   16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *  * 240  * |  0  0  1  1
. . x3x4x4/3*c ♦   48 |    0  24  24  24 |   0   0   0   0   8   6   6 |   *   *   *   *  *   * 40 |  0  0  0  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x3x3x .      ♦   60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5  0   0  0 | 32  *  *  *
o3x3x . x4/3*c ♦  192 |  192  96   0  96 |  64  64   0  96   0  24   0 |  16   0  32   0  8   0  0 |  * 10  *  *
o3x . x4x      ♦   24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0  0   3  0 |  *  * 80  *
. x3x3x4x4/3*c ♦  384 |  192 192 192 192 |   0  64  96  96  64  48  48 |   0   0   0  16  8  24  8 |  *  *  * 10
```