Acronym noqrant
Name penteractiquasirhombated penteractitriacontaditeron
Field of sections
 ©
Circumradius sqrt[25-8 sqrt(2)]/2 = 1.849749
Vertex figure
 ©
Coordinates ((2 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – no other uniform polyteral members)
Face vector 1920, 4800, 4000, 1320, 132
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude  

As abstract polytope noqrant is isomorphic to nurrant, thereby interchanging the roles of octagrams and octagons, resp. replacing quitco by girco and op by stop, resp. gaqrit by grit, todip by tistodipand thaquitpath by thatpath.


Incidence matrix according to Dynkin symbol

o3x3x3x4x4/3*c

. . . . .      | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2  2   2  1 |  1  1  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
. x . . .      |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1  1   1  0 |  1  1  1  1
. . x . .      |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2  2   0  1 |  1  1  0  2
. . . x .      |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2  0   2  1 |  1  0  1  2
. . . . x      |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0  2   2  1 |  0  1  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x . . .      |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0  0   0  0 |  1  1  1  0
. x3x . .      |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1  1   0  0 |  1  1  0  1
. x . x .      |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1  0   1  0 |  1  0  1  1
. x . . x      |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0  1   1  0 |  0  1  1  1
. . x3x .      |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2  0   0  1 |  1  0  0  2
. . x . x4/3*c |    8 |    0   4   0   4 |   *   *   *   *   * 240   * |   0   0   0   0  2   0  1 |  0  1  0  2
. . . x4x      |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0  0   2  1 |  0  0  1  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x3x . .         12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *  *   *  * |  1  1  0  0
o3x . x .          6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *  *   *  * |  1  0  1  0
o3x . . x          6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *  *   *  * |  0  1  1  0
. x3x3x .         24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160  *   *  * |  1  0  0  1
. x3x . x4/3*c    48 |   24  24   0  24 |   0   8   0  12   0   6   0 |   *   *   *   * 80   *  * |  0  1  0  1
. x . x4x         16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *  * 240  * |  0  0  1  1
. . x3x4x4/3*c    48 |    0  24  24  24 |   0   0   0   0   8   6   6 |   *   *   *   *  *   * 40 |  0  0  0  2
---------------+------+------------------+-----------------------------+---------------------------+------------
o3x3x3x .         60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5  0   0  0 | 32  *  *  *
o3x3x . x4/3*c   192 |  192  96   0  96 |  64  64   0  96   0  24   0 |  16   0  32   0  8   0  0 |  * 10  *  *
o3x . x4x         24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0  0   3  0 |  *  * 80  *
. x3x3x4x4/3*c   384 |  192 192 192 192 |   0  64  96  96  64  48  48 |   0   0   0  16  8  24  8 |  *  *  * 10

© 2004-2025
top of page