Acronym n,n,n-tippip Name n-gon - n-gon - n-gon - triprismatic prism Circumradius sqrt[1/4+3/(4 sin2(π/n))] Especially tratratrip (n=3)   hept (n=4) Confer general polytopal classes: segmentoexa

Incidence matrix according to Dynkin symbol

```x xno xno xno   (n>2)

. . . . . . .    | 2nnn |   1    6 |    6   3   12 |   3   12   12    8 |  12   8  3  12 |  3  12  6 |  6 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x . . . . . .    |    2 | nnn    * |    6   0    0 |   3   12    0    0 |  12   8  0   0 |  3  12  0 |  6 0
. x . . . . .  & |    2 |   * 6nnn |    1   1    4 |   1    4    6    4 |   6   4  2   8 |  2   8  5 |  5 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x x . . . . .  & |    4 |   2    2 | 3nnn   *    * |   1    4    0    0 |   6   4  0   0 |  2   8  0 |  5 0
. xno . . . .  & |    n |   0    n |    * 6nn    * |   1    0    4    0 |   4   0  2   4 |  2   4  4 |  4 1
. x . x . . .  & |    4 |   0    4 |    *   * 6nnn |   0    1    2    2 |   2   2  1   5 |  1   5  4 |  4 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x xno . . . .  & ♦   2n |   n   2n |    n   2    0 | 3nn    *    *    * |   4   0  0   0 |  2   4  0 |  4 0
x x . x . . .  & ♦    8 |   4    8 |    4   0    2 |   * 3nnn    *    * |   2   2  0   0 |  1   5  0 |  4 0
. xno x . . .  & ♦   2n |   0   3n |    0   2    n |   *    * 12nn    * |   1   0  1   2 |  1   2  3 |  3 1
. x . x . x .    ♦    8 |   0   12 |    0   0    6 |   *    *    * 2nnn |   0   1  0   3 |  0   3  3 |  3 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x xno x . . .  & ♦   4n |  2n   6n |   3n   4   2n |   2    n    2    0 | 6nn   *  *   * |  1   2  0 |  3 0
x x . x . x .    ♦   16 |   8   24 |   12   0   12 |   0    6    0    2 |   * nnn  *   * |  0   3  0 |  3 0
. xno xno . .  & ♦   nn |   0  2nn |    0  2n   nn |   0    0   2n    0 |   *   * 6n   * |  1   0  2 |  2 1
. xno x . x .  & ♦   4n |   0   8n |    0   4   5n |   0    0    4    n |   *   *  * 6nn |  0   1  2 |  2 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x xno xno . .  & ♦  2nn |  nn  4nn |  2nn  4n  2nn |  2n   nn   4n    0 |  2n   0  2   0 | 3n   *  * |  2 0
x xno x . x .  & ♦   8n |  4n  16n |   8n   8  10n |   4   5n    8   2n |   4   n  0   2 |  * 3nn  * |  2 0
. xno xno x .  & ♦  2nn |   0  5nn |    0  4n  4nn |   0    0   6n   nn |   0   0  2  2n |  *   * 6n |  1 1
-----------------+------+----------+---------------+--------------------+----------------+-----------+-----
x xno xno x .  & ♦  4nn | 2nn 10nn |  5nn  8n  8nn |  4n  4nn  12n  2nn |  6n  nn  4  4n |  2  2n  2 | 3n *
. xno xno xno    ♦  nnn |   0 3nnn |    0 3nn 3nnn |   0    0  6nn  nnn |   0   0 3n 3nn |  0   0 3n |  * 2
```