Acronym n,m,k-tippip
Name n-gon - m-gon - m-gon - triprismatic prism
Circumradius sqrt[1/4+1/(4 sin2(π/n))+1/(4 sin2(π/m))+1/(4 sin2(π/m))]
Face vector 2nmk, 7nmk, 9nmk+2nm+2nk+2mk, 5nmk+5nm+5nk+5mk, nmk+4nm+4nk+4mk+2n+2m+2k, nm+nk+mk+3n+3m+3k, n+m+k+2
Especially tratratrip (n=m=k=3)   hept (n=m=k=4)   n,n,n-tippip (n=m=k)  
Confer
general polytopal classes:
Wythoffian polyexa  

Incidence matrix according to Dynkin symbol

x xno xmo xko   (n,m,k>2)

. . . . . . . | 2nmk |   1    2    2    2 |   2   2   2   1    4    4   1    4   1 |  1   4   4  1   4  1   2   2   2    8   2   2   2 |  2  2  2   8  2  2  2  1   4  1   4   4  1 | 1  4 1  4  4 1  2  2  2 | 2 2 2 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x . . . . . . |    2 | nmk    *    *    * |   2   2   2   0    0    0   0    0   0 |  1   4   4  1   4  1   0   0   0    0   0   0   0 |  2  2  2   8  2  2  2  0   0  0   0   0  0 | 1  4 1  4  4 1  0  0  0 | 2 2 2 0
. x . . . . . |    2 |   * 2nmk    *    * |   1   0   0   1    2    2   0    0   0 |  1   2   2  0   0  0   2   2   1    4   1   0   0 |  2  2  1   4  1  0  0  1   4  1   2   2  0 | 1  4 1  2  2 0  2  2  1 | 2 2 1 1
. . . x . . . |    2 |   *    * 2nmk    * |   0   1   0   0    2    0   1    2   0 |  0   2   0  1   2  0   1   0   2    4   0   2   1 |  1  0  2   4  0  2  1  1   2  0   4   2  1 | 1  2 0  4  2 1  2  1  2 | 2 1 2 1
. . . . . x . |    2 |   *    *    * 2nmk |   0   0   1   0    0    2   0    2   1 |  0   0   2  0   2  1   0   1   0    4   2   1   2 |  0  1  0   4  2  1  2  0   2  1   2   4  1 | 0  2 1  2  4 1  1  2  2 | 1 2 2 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x x . . . . . |    4 |   2    2    0    0 | nmk   *   *   *    *    *   *    *   * |  1   2   2  0   0  0   0   0   0    0   0   0   0 |  2  2  1   4  1  0  0  0   0  0   0   0  0 | 1  4 1  2  2 0  0  0  0 | 2 2 1 0
x . . x . . . |    4 |   2    0    2    0 |   * nmk   *   *    *    *   *    *   * |  0   2   0  1   2  0   0   0   0    0   0   0   0 |  1  0  2   4  0  2  1  0   0  0   0   0  0 | 1  2 0  4  2 1  0  0  0 | 2 1 2 0
x . . . . x . |    4 |   2    0    0    2 |   *   * nmk   *    *    *   *    *   * |  0   0   2  0   2  1   0   0   0    0   0   0   0 |  0  1  0   4  2  1  2  0   0  0   0   0  0 | 0  2 1  2  4 1  0  0  0 | 1 2 2 0
. xno . . . . |    n |   0    n    0    0 |   *   *   * 2mk    *    *   *    *   * |  1   0   0  0   0  0   2   2   0    0   0   0   0 |  2  2  0   0  0  0  0  1   4  1   0   0  0 | 1  4 1  0  0 0  2  2  0 | 2 2 0 1
. x . x . . . |    4 |   0    2    2    0 |   *   *   *   * 2nmk    *   *    *   * |  0   1   0  0   0  0   1   0   1    2   0   0   0 |  1  0  1   2  0  0  0  1   2  0   2   1  0 | 1  2 0  2  1 0  2  1  1 | 2 1 1 1
. x . . . x . |    4 |   0    2    0    2 |   *   *   *   *    * 2nmk   *    *   * |  0   0   1  0   0  0   0   1   0    2   1   0   0 |  0  1  0   2  1  0  0  0   2  1   1   2  0 | 0  2 1  1  2 0  1  2  1 | 1 2 1 1
. . . xmo . . |    m |   0    0    m    0 |   *   *   *   *    *    * 2nk    *   * |  0   0   0  1   0  0   0   0   2    0   0   2   0 |  0  0  2   0  0  2  0  1   0  0   4   0  1 | 1  0 0  4  0 1  2  0  2 | 2 0 2 1
. . . x . x . |    4 |   0    0    2    2 |   *   *   *   *    *    *   * 2nmk   * |  0   0   0  0   1  0   0   0   0    2   0   1   1 |  0  0  0   2  0  1  1  0   1  0   2   2  1 | 0  1 0  2  2 1  1  1  2 | 1 1 2 1
. . . . . xko |    k |   0    0    0    k |   *   *   *   *    *    *   *    * 2nm |  0   0   0  0   0  1   0   0   0    0   2   0   2 |  0  0  0   0  2  0  2  0   0  1   0   4  1 | 0  0 1  0  4 1  0  2  2 | 0 2 2 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x xno . . . .    2n |   n   2n    0    0 |   n   0   0   2    0    0   0    0   0 | mk   *   *  *   *  *   *   *   *    *   *   *   * |  2  2  0   0  0  0  0  0   0  0   0   0  0 | 1  4 1  0  0 0  0  0  0 | 2 2 0 0
x x . x . . .     8 |   4    4    4    0 |   2   2   0   0    2    0   0    0   0 |  * nmk   *  *   *  *   *   *   *    *   *   *   * |  1  0  1   2  0  0  0  0   0  0   0   0  0 | 1  2 0  2  1 0  0  0  0 | 2 1 1 0
x x . . . x .     8 |   4    4    0    4 |   2   0   2   0    0    2   0    0   0 |  *   * nmk  *   *  *   *   *   *    *   *   *   * |  0  1  0   2  1  0  0  0   0  0   0   0  0 | 0  2 1  1  2 0  0  0  0 | 1 2 1 0
x . . xmo . .    2m |   m    0   2m    0 |   0   m   0   0    0    0   2    0   0 |  *   *   * nk   *  *   *   *   *    *   *   *   * |  0  0  2   0  0  2  0  0   0  0   0   0  0 | 1  0 0  4  0 1  0  0  0 | 2 0 2 0
x . . x . x .     8 |   4    0    4    4 |   0   2   2   0    0    0   0    2   0 |  *   *   *  * nmk  *   *   *   *    *   *   *   * |  0  0  0   2  0  1  1  0   0  0   0   0  0 | 0  1 0  2  2 1  0  0  0 | 1 1 2 0
x . . . . xko    2k |   k    0    0   2k |   0   0   k   0    0    0   0    0   2 |  *   *   *  *   * nm   *   *   *    *   *   *   * |  0  0  0   0  2  0  2  0   0  0   0   0  0 | 0  0 1  0  4 1  0  0  0 | 0 2 2 0
. xno x . . .    2n |   0   2n    n    0 |   0   0   0   2    n    0   0    0   0 |  *   *   *  *   *  * 2mk   *   *    *   *   *   * |  1  0  0   0  0  0  0  1   2  0   0   0  0 | 1  2 0  0  0 0  2  1  0 | 2 1 0 1
. xno . . x .    2n |   0   2n    0    n |   0   0   0   2    0    n   0    0   0 |  *   *   *  *   *  *   * 2mk   *    *   *   *   * |  0  1  0   0  0  0  0  0   2  1   0   0  0 | 0  2 1  0  0 0  1  2  0 | 1 2 0 1
. x . xmo . .    2m |   0    m   2m    0 |   0   0   0   0    m    0   2    0   0 |  *   *   *  *   *  *   *   * 2nk    *   *   *   * |  0  0  1   0  0  0  0  1   0  0   2   0  0 | 1  0 0  2  0 0  2  0  1 | 2 0 1 1
. x . x . x .     8 |   0    4    4    4 |   0   0   0   0    2    2   0    2   0 |  *   *   *  *   *  *   *   *   * 2nmk   *   *   * |  0  0  0   1  0  0  0  0   1  0   1   1  0 | 0  1 0  1  1 0  1  1  1 | 1 1 1 1
. x . . . xko    2k |   0    k    0   2k |   0   0   0   0    0    k   0    0   2 |  *   *   *  *   *  *   *   *   *    * 2nm   *   * |  0  0  0   0  1  0  0  0   0  1   0   2  0 | 0  0 1  0  2 0  0  2  1 | 0 2 1 1
. . . xmo x .    2m |   0    0   2m    m |   0   0   0   0    0    0   2    m   0 |  *   *   *  *   *  *   *   *   *    *   * 2nk   * |  0  0  0   0  0  1  0  0   0  0   2   0  1 | 0  0 0  2  0 1  1  0  2 | 1 0 2 1
. . . x . xko    2k |   0    0    k   2k |   0   0   0   0    0    0   0    k   2 |  *   *   *  *   *  *   *   *   *    *   *   * 2nm |  0  0  0   0  0  0  1  0   0  0   0   2  1 | 0  0 0  0  2 1  0  1  2 | 0 1 2 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x xno x . . .    4n |  2n   4n   2n    0 |  2n   n   0   4   2n    0   0    0   0 |  2   n   0  0   0  0   2   0   0    0   0   0   0 | mk  *  *   *  *  *  *  *   *  *   *   *  * | 1  2 0  0  0 0  0  0  0 | 2 1 0 0
x xno . . x .    4n |  2n   4n    0   2n |  2n   0   n   4    0   2n   0    0   0 |  2   0   n  0   0  0   0   2   0    0   0   0   0 |  * mk  *   *  *  *  *  *   *  *   *   *  * | 0  2 1  0  0 0  0  0  0 | 1 2 0 0
x x . xmo . .    4m |  2m   2m   4m    0 |   m  2m   0   0   2m    0   4    0   0 |  0   m   0  2   0  0   0   0   2    0   0   0   0 |  *  * nk   *  *  *  *  *   *  *   *   *  * | 1  0 0  2  0 0  0  0  0 | 2 0 1 0
x x . x . x .    16 |   8    8    8    8 |   4   4   4   0    4    4   0    4   0 |  0   2   2  0   2  0   0   0   0    2   0   0   0 |  *  *  * nmk  *  *  *  *   *  *   *   *  * | 0  1 0  1  1 0  0  0  0 | 1 1 1 0
x x . . . xko    4k |  2k   2k    0   4k |   k   0  2k   0    0   2k   0    0   4 |  0   0   k  0   0  2   0   0   0    0   2   0   0 |  *  *  *   * nm  *  *  *   *  *   *   *  * | 0  0 1  0  2 0  0  0  0 | 0 2 1 0
x . . xmo x .    4m |  2m    0   4m   2m |   0  2m   m   0    0    0   4   2m   0 |  0   0   0  2   m  0   0   0   0    0   0   2   0 |  *  *  *   *  * nk  *  *   *  *   *   *  * | 0  0 0  2  0 1  0  0  0 | 1 0 2 0
x . . x . xko    4k |  2k    0   2k   4k |   0   k  2k   0    0    0   0   2k   4 |  0   0   0  0   k  2   0   0   0    0   0   0   2 |  *  *  *   *  *  * nm  *   *  *   *   *  * | 0  0 0  0  2 1  0  0  0 | 0 1 2 0
. xno xmo . .    nm |   0   nm   nm    0 |   0   0   0   m   nm    0   n    0   0 |  0   0   0  0   0  0   m   0   n    0   0   0   0 |  *  *  *   *  *  *  * 2k   *  *   *   *  * | 1  0 0  0  0 0  2  0  0 | 2 0 0 1
. xno x . x .    4n |   0   4n   2n   2n |   0   0   0   4   2n   2n   0    n   0 |  0   0   0  0   0  0   2   2   0    n   0   0   0 |  *  *  *   *  *  *  *  * 2mk  *   *   *  * | 0  1 0  0  0 0  1  1  0 | 1 1 0 1
. xno . . xko    nk |   0   nk    0   nk |   0   0   0   k    0   nk   0    0   n |  0   0   0  0   0  0   0   k   0    0   n   0   0 |  *  *  *   *  *  *  *  *   * 2m   *   *  * | 0  0 1  0  0 0  0  2  0 | 0 2 0 1
. x . xmo x .    4m |   0   2m   4m   2m |   0   0   0   0   2m    m   4   2m   0 |  0   0   0  0   0  0   0   0   2    m   0   2   0 |  *  *  *   *  *  *  *  *   *  * 2nk   *  * | 0  0 0  1  0 0  1  0  1 | 1 0 1 1
. x . x . xko    4k |   0   2k   2k   4k |   0   0   0   0    k   2k   0   2k   4 |  0   0   0  0   0  0   0   0   0    k   2   0   2 |  *  *  *   *  *  *  *  *   *  *   * 2nm  * | 0  0 0  0  1 0  0  1  1 | 0 1 1 1
. . . xmo xko    mk |   0    0   mk   mk |   0   0   0   0    0    0   k   mk   m |  0   0   0  0   0  0   0   0   0    0   0   k   m |  *  *  *   *  *  *  *  *   *  *   *   * 2n | 0  0 0  0  0 1  0  0  2 | 0 0 2 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x xno xmo . .   2nm |  nm  2nm  2nm    0 |  nm  nm   0  2m  2nm    0  2n    0   0 |  m  nm   0  n   0  0  2m   0  2n    0   0   0   0 |  m  0  n   0  0  0  0  2   0  0   0   0  0 | k  * *  *  * *  *  *  * | 2 0 0 0
x xno x . x .    8n |  4n   8n   4n   4n |  4n  2n  2n   8   4n   4n   0   2n   0 |  4  2n  2n  0   n  0   4   4   0   2n   0   0   0 |  2  2  0   n  0  0  0  0   2  0   0   0  0 | * mk *  *  * *  *  *  * | 1 1 0 0
x xno . . xko   2nk |  nk  2nk    0  2nk |  nk   0  nk  2k    0  2nk   0    0  2n |  k   0  nk  0   0  n   0  2k   0    0  2n   0   0 |  0  k  0   0  n  0  0  0   0  2   0   0  0 | *  * m  *  * *  *  *  * | 0 2 0 0
x x . xmo x .    8m |  4m   4m   8m   4m |  2m  4m  2m   0   4m   2m   8   4m   0 |  0  2m   m  4  2m  0   0   0   4   2m   0   4   0 |  0  0  2   m  0  2  0  0   0  0   2   0  0 | *  * * nk  * *  *  *  * | 1 0 1 0
x x . x . xko    8k |  4k   4k   4k   8k |  2k  2k  4k   0   2k   4k   0   4k   8 |  0   k  2k  0  2k  4   0   0   0   2k   4   0   4 |  0  0  0   k  2  0  2  0   0  0   0   2  0 | *  * *  * nm *  *  *  * | 0 1 1 0
x . . xmo xko   2mk |  mk    0  2mk  2mk |   0  mk  mk   0    0    0  2k  2mk  2m |  0   0   0  k  mk  m   0   0   0    0   0  2k  2m |  0  0  0   0  0  k  m  0   0  0   0   0  2 | *  * *  *  * n  *  *  * | 0 0 2 0
. xno xmo x .   2nm |   0  2nm  2nm   nm |   0   0   0  2m  2nm   nm  2n   nm   0 |  0   0   0  0   0  0  2m   m  2n   nm   0   n   0 |  0  0  0   0  0  0  0  2   m  0   n   0  0 | *  * *  *  * * 2k  *  * | 1 0 0 1
. xno x . xko   2nk |   0  2nk   nk  2nk |   0   0   0  2k   nk  2nk   0   nk  2n |  0   0   0  0   0  0   k  2k   0   nk  2n   0   n |  0  0  0   0  0  0  0  0   k  2   0   n  0 | *  * *  *  * *  * 2m  * | 0 1 0 1
. x . xmo xko   2mk |   0   mk  2mk  2mk |   0   0   0   0   mk   mk  2k  2mk  2n |  0   0   0  0   0  0   0   0   k   mk   m  2k  2m |  0  0  0   0  0  0  0  0   0  0   k   m  2 | *  * *  *  * *  *  * 2n | 0 0 1 1
--------------+------+--------------------+----------------------------------------+---------------------------------------------------+--------------------------------------------+-------------------------+--------
x xno xmo x .   4nm | 2nm  4nm  4nm  2nm | 2nm 2nm  nm  4m  4nm  2nm  4n  2nm   0 | 2m 2nm  nm 2n  nm  0  4m  2m  4n  2nm   0  2n   0 | 2m  m 2n  nm  0  n  0  4  2m  0  2n   0  0 | 2  m 0  n  0 0  2  0  0 | k * * *
x xno x . xko   4nk | 2nk  4nk  2nk  4nk | 2nk  nk 2nk  4k  2nk  4nk   0  2nk  4n | 2k  nk 2nk  0  nk 2n  2k  4k   0  2nk  4n   0  2n |  k 2k  0  nk 2n  0  n  0  2k  4   0  2n  0 | 0  k 2  0  n 0  0  2  0 | * m * *
x x . xmo xko   4mk | 2mk  2mk  4mk  4mk |  mk 2mk 2mk   0  2mk  2mk  4k  4mk  4m |  0  mk  mk 2k 2mk 2m   0   0  2k  2mk  2m  4k  4m |  0  0  k  mk  m 2k 2m  0   0  0  2k  2m  4 | 0  0 0  k  m 2  0  0  2 | * * n *
. xno xmo xko   nmk |   0  nmk  nmk  nmk |   0   0   0  mk  nmk  nmk  nk  nmk  nm |  0   0   0  0   0  0  mk  mk  nk  nmk  nm  nk  nm |  0  0  0   0  0  0  0  k  mk  m  nk  nm  n | 0  0 0  0  0 0  k  m  n | * * * 2

© 2004-2025
top of page