Acronym guposaz Name great petated hepteractihecatonicosoctaexon Circumradius sqrt[9-2 sqrt(2)]/2 = 1.242133 Coordinates ((sqrt(2)-1)/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2)   & all permutations, all changes of sign

As abstract polytope guposaz is isomorphic to suposaz.

Incidence matrix according to Dynkin symbol

```x3o3o3o3o3o4/3x

. . . . . .   . | 896 |    6    6 |   15   30   15 |   20   60   60   20 |   15   60   90   60  15 |   6   30   60   60  30   6 |   1   6  15  20  15  6  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x . . . . .   . |   2 | 2688    * |    5    5    0 |   10   20   10    0 |   10   30   30   10   0 |   5   20   30   20   5   0 |   1   5  10  10   5  1  0
. . . . . .   x |   2 |    * 2688 |    0    5    5 |    0   10   20   10 |    0   10   30   30  10 |   0    5   20   30  20   5 |   0   1   5  10  10  5  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x3o . . . .   . |   3 |    3    0 | 4480    *    * |    4    4    0    0 |    6   12    6    0   0 |   4   12   12    4   0   0 |   1   4   6   4   1  0  0
x . . . . .   x |   4 |    2    2 |    * 6720    * |    0    4    4    0 |    0    6   12    6   0 |   0    4   12   12   4   0 |   0   1   4   6   4  1  0
. . . . . o4/3x |   4 |    0    4 |    *    * 3360 |    0    0    4    4 |    0    0    6   12   6 |   0    0    4   12  12   4 |   0   0   1   4   6  4  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x3o3o . . .   . ♦   4 |    6    0 |    4    0    0 | 4480    *    *    * |    3    3    0    0   0 |   3    6    3    0   0   0 |   1   3   3   1   0  0  0
x3o . . . .   x ♦   6 |    6    3 |    2    3    0 |    * 8960    *    * |    0    3    3    0   0 |   0    3    6    3   0   0 |   0   1   3   3   1  0  0
x . . . . o4/3x ♦   8 |    4    8 |    0    4    2 |    *    * 6720    * |    0    0    3    3   0 |   0    0    3    6   3   0 |   0   0   1   3   3  1  0
. . . . o3o4/3x ♦   8 |    0   12 |    0    0    6 |    *    *    * 2240 |    0    0    0    3   3 |   0    0    0    3   6   3 |   0   0   0   1   3  3  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x3o3o3o . .   . ♦   5 |   10    0 |   10    0    0 |    5    0    0    0 | 2688    *    *    *   * |   2    2    0    0   0   0 |   1   2   1   0   0  0  0
x3o3o . . .   x ♦   8 |   12    4 |    8    6    0 |    2    4    0    0 |    * 6720    *    *   * |   0    2    2    0   0   0 |   0   1   2   1   0  0  0
x3o . . . o4/3x ♦  12 |   12   12 |    4   12    3 |    0    4    3    0 |    *    * 6720    *   * |   0    0    2    2   0   0 |   0   0   1   2   1  0  0
x . . . o3o4/3x ♦  16 |    8   24 |    0   12   12 |    0    0    6    2 |    *    *    * 3360   * |   0    0    0    2   2   0 |   0   0   0   1   2  1  0
. . . o3o3o4/3x ♦  16 |    0   32 |    0    0   24 |    0    0    0    8 |    *    *    *    * 840 |   0    0    0    0   2   2 |   0   0   0   0   1  2  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x3o3o3o3o .   . ♦   6 |   15    0 |   20    0    0 |   15    0    0    0 |    6    0    0    0   0 | 896    *    *    *   *   * |   1   1   0   0   0  0  0
x3o3o3o . .   x ♦  10 |   20    5 |   20   10    0 |   10   10    0    0 |    2    5    0    0   0 |   * 2688    *    *   *   * |   0   1   1   0   0  0  0
x3o3o . . o4/3x ♦  16 |   24   16 |   16   24    4 |    4   16    6    0 |    0    4    4    0   0 |   *    * 3360    *   *   * |   0   0   1   1   0  0  0
x3o . . o3o4/3x ♦  24 |   24   36 |    8   36   18 |    0   12   18    3 |    0    0    6    3   0 |   *    *    * 2240   *   * |   0   0   0   1   1  0  0
x . . o3o3o4/3x ♦  32 |   16   64 |    0   32   48 |    0    0   24   16 |    0    0    0    8   2 |   *    *    *    * 840   * |   0   0   0   0   1  1  0
. . o3o3o3o4/3x ♦  32 |    0   80 |    0    0   80 |    0    0    0   40 |    0    0    0    0  10 |   *    *    *    *   * 168 |   0   0   0   0   0  1  1
----------------+-----+-----------+----------------+---------------------+-------------------------+----------------------------+--------------------------
x3o3o3o3o3o   . ♦   7 |   21    0 |   35    0    0 |   35    0    0    0 |   21    0    0    0   0 |   7    0    0    0   0   0 | 128   *   *   *   *  *  *
x3o3o3o3o .   x ♦  12 |   30    6 |   40   15    0 |   30   20    0    0 |   12   15    0    0   0 |   2    6    0    0   0   0 |   * 448   *   *   *  *  *
x3o3o3o . o4/3x ♦  20 |   40   20 |   40   40    5 |   20   40   10    0 |    4   20   10    0   0 |   0    4    5    0   0   0 |   *   * 672   *   *  *  *
x3o3o . o3o4/3x ♦  32 |   48   48 |   32   72   24 |    8   48   36    4 |    0   12   24    6   0 |   0    0    6    4   0   0 |   *   *   * 560   *  *  *
x3o . o3o3o4/3x ♦  48 |   48   96 |   16   96   72 |    0   32   72   24 |    0    0   24   24   3 |   0    0    0    8   3   0 |   *   *   *   * 280  *  *
x . o3o3o3o4/3x ♦  64 |   32  160 |    0   80  160 |    0    0   80   80 |    0    0    0   40  20 |   0    0    0    0  10   2 |   *   *   *   *   * 84  *
. o3o3o3o3o4/3x ♦  64 |    0  192 |    0    0  240 |    0    0    0  160 |    0    0    0    0  60 |   0    0    0    0   0  12 |   *   *   *   *   *  * 14
```