Acronym gikkiv datapixady
Name great skewverted ditrigonary prismatohexacosadishecatonicosachoron
Circumradius sqrt[13-4 sqrt(5)] = 2.013884
Colonel of regiment gik vixathi
Face vector 7200, 21600, 14880, 1560
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope gikkiv datapixady is isomorphic to skiv datapixady, thereby replacing pentagrams by pentagons and decagons by decagrams, resp. sidditdid by gidditdid, qrid by srid, and dip by stiddip. – As such gikkiv datapixady is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o3x5x5/3*b

. . . .      | 7200 |    2    2    2 |    1    2    2    1    1    2 |   1   1   2   1
-------------+------+----------------+-------------------------------+----------------
x . . .      |    2 | 7200    *    * |    1    1    1    0    0    0 |   1   1   1   0
. . x .      |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . . x      |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
-------------+------+----------------+-------------------------------+----------------
x3o . .      |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
x . x .      |    4 |    2    2    0 |    * 3600    *    *    *    * |   1   0   1   0
x . . x      |    4 |    2    0    2 |    *    * 3600    *    *    * |   0   1   1   0
. o3x .      |    3 |    0    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. o . x5/3*b |    5 |    0    0    5 |    *    *    *    * 1440    * |   0   1   0   1
. . x5x      |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
-------------+------+----------------+-------------------------------+----------------
x3o3x .         12 |   12   12    0 |    4    6    0    4    0    0 | 600   *   *   *
x3o . x5/3*b    60 |   60    0   60 |   20    0   30    0   12    0 |   * 120   *   *
x . x5x         20 |   10   10   10 |    0    5    5    0    0    2 |   *   * 720   *
. o3x5x5/3*b    60 |    0   60   60 |    0    0    0   20   12   12 |   *   *   * 120

x3/2o3/2x5x5/2*b

.   .   . .      | 7200 |    2    2    2 |    1    2    2    1    1    2 |   1   1   2   1
-----------------+------+----------------+-------------------------------+----------------
x   .   . .      |    2 | 7200    *    * |    1    1    1    0    0    0 |   1   1   1   0
.   .   x .      |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   .   . x      |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
-----------------+------+----------------+-------------------------------+----------------
x3/2o   . .      |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
x   .   x .      |    4 |    2    2    0 |    * 3600    *    *    *    * |   1   0   1   0
x   .   . x      |    4 |    2    0    2 |    *    * 3600    *    *    * |   0   1   1   0
.   o3/2x .      |    3 |    0    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   o   . x5/2*b |    5 |    0    0    5 |    *    *    *    * 1440    * |   0   1   0   1
.   .   x5x      |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
-----------------+------+----------------+-------------------------------+----------------
x3/2o3/2x .         12 |   12   12    0 |    4    6    0    4    0    0 | 600   *   *   *
x3/2o   . x5/2*b    60 |   60    0   60 |   20    0   30    0   12    0 |   * 120   *   *
x   .   x5x         20 |   10   10   10 |    0    5    5    0    0    2 |   *   * 720   *
.   o3/2x5x5/2*b    60 |    0   60   60 |    0    0    0   20   12   12 |   *   *   * 120

© 2004-2024
top of page