Acronym catal
Name cellitruncated heptapeton,
steritruncated heptapeton
Circumradius sqrt(24/7) = 1.851640
Face vector 420, 2100, 3780, 2940, 945, 105
Confer
general polytopal classes:
Wythoffian polypeta   lace simplices  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3x3o3o3x3o

. . . . . . | 420 |   1   3    6 |   3   6   3   12   6   3 |   3  12   6   3   1   6   6   6   2   3 |  1   6   6   6   2   3  2   3   3  1 | 2  3  3  1 1
------------+-----+--------------+--------------------------+-----------------------------------------+--------------------------------------+-------------
x . . . . . |   2 | 210   *    * |   3   6   0    0   0   0 |   3  12   6   3   0   0   0   0   0   0 |  1   6   6   6   2   3  0   0   0  0 | 2  3  3  1 0
. x . . . . |   2 |   * 630    * |   1   0   2    4   0   0 |   2   4   0   0   1   4   2   2   0   0 |  1   4   2   2   0   0  2   2   1  0 | 2  2  1  0 1
. . . . x . |   2 |   *   * 1260 |   0   1   0    2   2   1 |   0   2   2   1   0   1   2   2   1   2 |  0   1   2   2   1   2  1   1   2  1 | 1  1  2  1 1
------------+-----+--------------+--------------------------+-----------------------------------------+--------------------------------------+-------------
x3x . . . . |   6 |   3   3    0 | 210   *   *    *   *   * |   2   4   0   0   0   0   0   0   0   0 |  1   4   2   2   0   0  0   0   0  0 | 2  2  1  0 0
x . . . x . |   4 |   2   0    2 |   * 630   *    *   *   * |   0   2   2   1   0   0   0   0   0   0 |  0   1   2   2   1   2  0   0   0  0 | 1  1  2  1 0
. x3o . . . |   3 |   0   3    0 |   *   * 420    *   *   * |   1   0   0   0   1   2   0   0   0   0 |  1   2   0   0   0   0  2   1   0  0 | 2  1  0  0 1
. x . . x . |   4 |   0   2    2 |   *   *   * 1260   *   * |   0   1   0   0   0   1   1   1   0   0 |  0   1   1   1   0   0  1   1   1  0 | 1  1  1  0 1
. . . o3x . |   3 |   0   0    3 |   *   *   *    * 840   * |   0   0   1   0   0   0   1   0   1   1 |  0   0   1   0   1   1  1   0   1  1 | 1  0  1  1 1
. . . . x3o |   3 |   0   0    3 |   *   *   *    *   * 420 |   0   0   0   1   0   0   0   2   0   2 |  0   0   0   2   0   2  0   1   2  1 | 0  1  2  1 1
------------+-----+--------------+--------------------------+-----------------------------------------+--------------------------------------+-------------
x3x3o . . .   12 |   6  12    0 |   4   0   4    0   0   0 | 105   *   *   *   *   *   *   *   *   * |  1   2   0   0   0   0  0   0   0  0 | 2  1  0  0 0
x3x . . x .   12 |   6   6    6 |   2   3   0    3   0   0 |   * 420   *   *   *   *   *   *   *   * |  0   1   1   1   0   0  0   0   0  0 | 1  1  1  0 0
x . . o3x .    6 |   3   0    6 |   0   3   0    0   2   0 |   *   * 420   *   *   *   *   *   *   * |  0   0   1   0   1   1  0   0   0  0 | 1  0  1  1 0
x . . . x3o    6 |   3   0    6 |   0   3   0    0   0   2 |   *   *   * 210   *   *   *   *   *   * |  0   0   0   2   0   2  0   0   0  0 | 0  1  2  1 0
. x3o3o . .    4 |   0   6    0 |   0   0   4    0   0   0 |   *   *   *   * 105   *   *   *   *   * |  1   0   0   0   0   0  2   0   0  0 | 2  0  0  0 1
. x3o . x .    6 |   0   6    3 |   0   0   2    3   0   0 |   *   *   *   *   * 420   *   *   *   * |  0   1   0   0   0   0  1   1   0  0 | 1  1  0  0 1
. x . o3x .    6 |   0   3    6 |   0   0   0    3   2   0 |   *   *   *   *   *   * 420   *   *   * |  0   0   1   0   0   0  1   0   1  0 | 1  0  1  0 1
. x . . x3o    6 |   0   3    6 |   0   0   0    3   0   2 |   *   *   *   *   *   *   * 420   *   * |  0   0   0   1   0   0  0   1   1  0 | 0  1  1  0 1
. . o3o3x .    4 |   0   0    6 |   0   0   0    0   4   0 |   *   *   *   *   *   *   *   * 210   * |  0   0   0   0   1   0  1   0   0  1 | 1  0  0  1 1
. . . o3x3o    6 |   0   0   12 |   0   0   0    0   4   4 |   *   *   *   *   *   *   *   *   * 210 |  0   0   0   0   0   1  0   0   1  1 | 0  0  1  1 1
------------+-----+--------------+--------------------------+-----------------------------------------+--------------------------------------+-------------
x3x3o3o . .   20 |  10  30    0 |  10   0  20    0   0   0 |   5   0   0   0   5   0   0   0   0   0 | 21   *   *   *   *   *  *   *   *  * | 2  0  0  0 0
x3x3o . x .   24 |  12  24   12 |   8   6   8   12   0   0 |   2   4   0   0   0   4   0   0   0   0 |  * 105   *   *   *   *  *   *   *  * | 1  1  0  0 0
x3x . o3x .   18 |   9   9   18 |   3   9   0    9   6   0 |   0   3   3   0   0   0   3   0   0   0 |  *   * 140   *   *   *  *   *   *  * | 1  0  1  0 0
x3x . . x3o   18 |   9   9   18 |   3   9   0    9   0   6 |   0   3   0   3   0   0   0   3   0   0 |  *   *   * 140   *   *  *   *   *  * | 0  1  1  0 0
x . o3o3x .    8 |   4   0   12 |   0   6   0    0   8   0 |   0   0   4   0   0   0   0   0   2   0 |  *   *   *   * 105   *  *   *   *  * | 1  0  0  1 0
x . . o3x3o   12 |   6   0   24 |   0  12   0    0   8   8 |   0   0   4   4   0   0   0   0   0   2 |  *   *   *   *   * 105  *   *   *  * | 0  0  1  1 0
. x3o3o3x .   20 |   0  30   30 |   0   0  20   30  20   0 |   0   0   0   0   5  10  10   0   5   0 |  *   *   *   *   *   * 42   *   *  * | 1  0  0  0 1
. x3o . x3o    9 |   0   9    9 |   0   0   3    9   0   3 |   0   0   0   0   0   3   0   3   0   0 |  *   *   *   *   *   *  * 140   *  * | 0  1  0  0 1
. x . o3x3o   12 |   0   6   24 |   0   0   0   12   8   8 |   0   0   0   0   0   0   4   4   0   2 |  *   *   *   *   *   *  *   * 105  * | 0  0  1  0 1
. . o3o3x3o   10 |   0   0   30 |   0   0   0    0  20  10 |   0   0   0   0   0   0   0   0   5   5 |  *   *   *   *   *   *  *   *   * 42 | 0  0  0  1 1
------------+-----+--------------+--------------------------+-----------------------------------------+--------------------------------------+-------------
x3x3o3o3x .  120 |  60 180  180 |  60  90 120  180 120   0 |  30  60  60   0  30  60  60   0  30   0 |  6  15  20   0  15   0  6   0   0  0 | 7  *  *  * *
x3x3o . x3o   36 |  18  36   36 |  12  18  12   36   0  12 |   3  12   0   6   0  12   0  12   0   0 |  0   3   0   4   0   0  0   4   0  0 | * 35  *  * *
x3x . o3x3o   36 |  18  18   72 |   6  36   0   36  24  24 |   0  12  12  12   0   0  12  12   0   6 |  0   0   4   4   0   3  0   0   3  0 | *  * 35  * *
x . o3o3x3o   20 |  10   0   60 |   0  30   0    0  40  20 |   0   0  20  10   0   0   0   0  10  10 |  0   0   0   0   5   5  0   0   0  2 | *  *  * 21 *
. x3o3o3x3o   60 |   0  90  180 |   0   0  60  180 120  60 |   0   0   0   0  15  60  60  60  30  30 |  0   0   0   0   0   0  6  20  15  6 | *  *  *  * 7

© 2004-2024
top of page