Acronym | ebauco |
Name |
elongated bi-augmented cuboctahedron, 4fold elongated rhombohedron, bi-augmented pexco |
| |
Circumradius | ... |
Vertex figure | [r4], [R,R,h], [r,H,H] |
Dihedral angles
(at margins) |
|
Face vector | 18, 28, 12 |
Confer | pexco bauco |
The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Their vertex angles are h = 90° resp. H = 135°. The rhombs {(r,R)2} are just a coplanar pair of regular triangles. Their vertex angles are r = 60° resp. R = 120°.
Note that the layer-wise x distances, used below in the descriptions, all qualify as false edges. Rather those are just the RR diagonals of the rhombs. – Those would become real ones only within its decomposition into squippy + pexco + squippy.
Incidence matrix according to Dynkin symbol
Awx ooq4oxo&#zx → height = 0, A = 1+2 sqrt(2) = 3.828427 (tegum sum of A-line, (w,x,x)-cube, and gyro (x,q,q)-cube) o.. o..4o.. | 2 * * | 4 0 0 | 4 0 [r4] .o. .o.4.o. | * 8 * | 1 2 0 | 2 1 [R,R,h] ..o ..o4..o | * * 8 | 0 2 1 | 1 2 [r,H,H] ----------------+-------+--------+---- oo. oo.4oo.&#x | 1 1 0 | 8 * * | 2 0 .oo .oo4.oo&#x | 0 1 1 | * 16 * | 1 1 ..x ... ... | 0 0 2 | * * 4 | 0 2 ----------------+-------+--------+---- ... ... oxo&#xt | 1 2 1 | 2 2 0 | 8 * {(r,R)2} .wx .oq ...&#zx | 0 2 4 | 0 4 2 | * 4 {(h,H,H)2}
ooqqoo4oxooxo&#xt → height(1,2) = height(2,3) = height(4,5) = height(5,6) = 1/sqrt(2) = 0.707107 height(3,4) = 1 (pt || pseudo {4} || pseudo dual q-{4} || pseudo dual q-{4} || pseudo {4} || pt) o.....4o..... | 1 * * * * * | 4 0 0 0 0 | 4 0 0 [r4] .o....4.o.... | * 4 * * * * | 1 2 0 0 0 | 2 1 0 [R,R,h] ..o...4..o... | * * 4 * * * | 0 2 1 0 0 | 1 2 1 [r,H,H] ...o..4...o.. | * * * 4 * * | 0 0 1 2 0 | 1 2 1 [r,H,H] ....o.4....o. | * * * * 4 * | 0 0 0 2 1 | 0 1 2 [R,R,h] .....o4.....o | * * * * * 1 | 0 0 0 0 4 | 0 0 4 [r4] ------------------+-------------+-----------+------ oo....4oo....&#x | 1 1 0 0 0 0 | 4 * * * * | 2 0 0 .oo...4.oo...&#x | 0 1 1 0 0 0 | * 8 * * * | 1 1 0 ..oo..4..oo..&#x | 0 0 1 1 0 0 | * * 4 * * | 0 2 0 ...oo.4...oo.&#x | 0 0 0 1 1 0 | * * * 8 * | 0 1 1 ....oo4....oo&#x | 0 0 0 0 1 1 | * * * * 4 | 0 0 2 ------------------+-------------+-----------+------ ...... oxo...&#xt | 1 2 1 0 0 0 | 2 2 0 0 0 | 4 * * {(r,R)2} .oqqo. ......&#xt | 0 1 2 2 1 0 | 0 2 2 2 0 | * 4 * {(h,H,H)2} ...... ...oxo&#xt | 0 0 0 1 2 1 | 0 0 0 2 2 | * * 4 {(r,R)2}
© 2004-2024 | top of page |