Acronym bauco Name bi-augmented cuboctahedron,4fold rhombohedron ` ©` Circumradius ... Vertex figure [r4], [R,R,4], [(r,4)2] Dihedral angles (at margins) between {(r,R)2} and {4}:   arccos(-1/sqrt(3)) = 125.264390° between {(r,R)2} and {(r,R)2}:   arccos(-1/3) = 109.471221° Confer co   squippy   ebauco

The rhombs {(r,R)2} are just a coplanar pair of regular triangles. Their vertex angles are r = 60° resp. R = 120°.

Note that the layer-wise x distances, used below in the descriptions, all qualify as false edges. Rather those are just the RR diagonals of the rhombs. – Those would become real ones only within its decomposition into squippy + co + squippy.

Incidence matrix according to Dynkin symbol

```Aqo ooq4oxo&#zx   → height = 0, A = 2 sqrt(2) = 2.828427
(tegum sum of A-line, (q,x,x)-cube, and perp gyro q-{4})

o.. o..4o..     | 2 * * | 4  0 | 4 0  [r4]
.o. .o.4.o.     | * 8 * | 1  2 | 2 1  [R,R,4]
..o ..o4..o     | * * 4 | 0  4 | 2 2  [(r,4)2]
----------------+-------+------+----
oo. oo.4oo.&#x  | 1 1 0 | 8  * | 2 0
.oo .oo4.oo&#x  | 0 1 1 | * 16 | 1 1
----------------+-------+------+----
... ... oxo&#xt | 1 2 1 | 2  2 | 8 *  {(r,R)2}
.qo .oq ...&#zx | 0 2 2 | 0  4 | * 4  {4}
```

```ooqoo4oxoxo&#xt   → all heights = 1/sqrt(2) = 0.707107
(pt || pseudo {4} || pseudo dual q-{4} || pseudo {4} || pt)

o....4o....     | 1 * * * * | 4 0 0 0 | 4 0 0  [r4]
.o...4.o...     | * 4 * * * | 1 2 0 0 | 2 1 0  [R,R,4]
..o..4..o..     | * * 4 * * | 0 2 2 0 | 1 2 1  [(r,4)2]
...o.4...o.     | * * * 4 * | 0 0 2 1 | 0 1 2  [R,R,4]
....o4....o     | * * * * 1 | 0 0 0 4 | 0 0 4  [r4]
----------------+-----------+---------+------
oo...4oo...&#x  | 1 1 0 0 0 | 4 * * * | 2 0 0
.oo..4.oo..&#x  | 0 1 1 0 0 | * 8 * * | 1 1 0
..oo.4..oo.&#x  | 0 0 1 1 0 | * * 8 * | 0 1 1
...oo4...oo&#x  | 0 0 0 1 1 | * * * 4 | 0 0 2
----------------+-----------+---------+------
..... oxo..&#xt | 1 2 1 0 0 | 2 2 0 0 | 4 * *  {(r,R)2}
.oqo. .....&#xt | 0 1 2 1 0 | 0 2 2 0 | * 4 *  {4}
..... ..oxo&#xt | 0 0 1 2 1 | 0 0 2 2 | * * 4  {(r,R)2}
```

 © 2004-2021 top of page