Acronym | bauco |
Name |
bi-augmented cuboctahedron, 4fold rhombohedron |
© | |
Circumradius | ... |
Vertex figure | [r4], [R,R,4], [(r,4)2] |
Dihedral angles
(at margins) |
|
Face vector | 14, 24, 12 |
Confer | co squippy ebauco |
The rhombs {(r,R)2} are just a coplanar pair of regular triangles. Their vertex angles are r = 60° resp. R = 120°.
Note that the layer-wise x distances, used below in the descriptions, all qualify as false edges. Rather those are just the RR diagonals of the rhombs. – Those would become real ones only within its decomposition into squippy + co + squippy.
Incidence matrix according to Dynkin symbol
Aqo ooq4oxo&#zx → height = 0, A = 2 sqrt(2) = 2.828427 (tegum sum of A-line, (q,x,x)-cube, and perp gyro q-{4}) o.. o..4o.. | 2 * * | 4 0 | 4 0 [r4] .o. .o.4.o. | * 8 * | 1 2 | 2 1 [R,R,4] ..o ..o4..o | * * 4 | 0 4 | 2 2 [(r,4)2] ----------------+-------+------+---- oo. oo.4oo.&#x | 1 1 0 | 8 * | 2 0 .oo .oo4.oo&#x | 0 1 1 | * 16 | 1 1 ----------------+-------+------+---- ... ... oxo&#xt | 1 2 1 | 2 2 | 8 * {(r,R)2} .qo .oq ...&#zx | 0 2 2 | 0 4 | * 4 {4}
ooqoo4oxoxo&#xt → all heights = 1/sqrt(2) = 0.707107 (pt || pseudo {4} || pseudo dual q-{4} || pseudo {4} || pt) o....4o.... | 1 * * * * | 4 0 0 0 | 4 0 0 [r4] .o...4.o... | * 4 * * * | 1 2 0 0 | 2 1 0 [R,R,4] ..o..4..o.. | * * 4 * * | 0 2 2 0 | 1 2 1 [(r,4)2] ...o.4...o. | * * * 4 * | 0 0 2 1 | 0 1 2 [R,R,4] ....o4....o | * * * * 1 | 0 0 0 4 | 0 0 4 [r4] ----------------+-----------+---------+------ oo...4oo...&#x | 1 1 0 0 0 | 4 * * * | 2 0 0 .oo..4.oo..&#x | 0 1 1 0 0 | * 8 * * | 1 1 0 ..oo.4..oo.&#x | 0 0 1 1 0 | * * 8 * | 0 1 1 ...oo4...oo&#x | 0 0 0 1 1 | * * * 4 | 0 0 2 ----------------+-----------+---------+------ ..... oxo..&#xt | 1 2 1 0 0 | 2 2 0 0 | 4 * * {(r,R)2} .oqo. .....&#xt | 0 1 2 1 0 | 0 2 2 0 | * 4 * {4} ..... ..oxo&#xt | 0 0 1 2 1 | 0 0 2 2 | * * 4 {(r,R)2}
© 2004-2024 | top of page |