Acronym 4,n/d-dip
Name square - n/d-gramal duoprism
Circumradius sqrt[1/2+1/(4 sin2(πd/n))]
Face vector 4n, 8n, 5n+4, n+4
Especially 4,n-dip (d=1)   4,2m-dip (n even, d=1)   cube (n=2, d=1)*   tisdip (n=3, d=1)   tes (n=4, d=1)   squipdip (n=5, d=1)   sistadip (n=5, d=2)   shiddip (n=6, d=1)   sodip (n=8, d=1)   sistodip (n=8, d=3)   squadedip (n=10, d=1)   sitwadip (n=12, d=1)  
Confer
general duoprisms:
n/d,m/b-dip  
general polytopal classes:
Wythoffian polychora   segmentochora  
External
links
hedrondude   wikipedia

* The case n/d=2/1 (cube) would belong here as well by concept. So it would have a different incidence matrix, because of the degeneracy of the n/d-gram. It even has a different dimensionality as a global figure.


Incidence matrix according to Dynkin symbol

x4o xn/do   (n>2)

. . .   . | 4n |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 4n  * | 1  2 0 | 2 1
. . x   . |  2 |  * 4n | 0  2 1 | 1 2
----------+----+-------+--------+----
x4o .   . |  4 |  4  0 | n  * * | 2 0
x . x   . |  4 |  2  2 | * 4n * | 1 1
. . xn/do |  n |  0  n | *  * 4 | 0 2
----------+----+-------+--------+----
x4o x   .   8 |  8  4 | 2  4 0 | n *
x . xn/do  2n |  n 2n | 0  n 2 | * 4

x x xn/do   (n>2)

. . .   . | 4n |  1  1  2 | 1  2  2 1 | 2 1 1
----------+----+----------+-----------+------
x . .   . |  2 | 2n  *  * | 1  2  0 0 | 2 1 0
. x .   . |  2 |  * 2n  * | 1  0  2 0 | 2 0 1
. . x   . |  2 |  *  * 4n | 0  1  1 1 | 1 1 1
----------+----+----------+-----------+------
x x .   . |  4 |  2  2  0 | n  *  * * | 2 0 0
x . x   . |  4 |  2  0  2 | * 2n  * * | 1 1 0
. x x   . |  4 |  0  2  2 | *  * 2n * | 1 0 1
. . xn/do |  n |  0  0  n | *  *  * 4 | 0 1 1
----------+----+----------+-----------+------
x x x   .   8 |  4  4  4 | 2  2  2 0 | n * *
x . xn/do  2n |  n  0 2n | 0  n  0 2 | * 2 *
. x xn/do  2n |  0  n 2n | 0  0  n 2 | * * 2

x x sn/ds   (n>2, d odd)

. . demi( .   . ) | 4n |  1  1  2 | 1  2  2 1 | 2 1 1
------------------+----+----------+-----------+------
x . demi( .   . ) |  2 | 2n  *  * | 1  2  0 0 | 2 1 0
. x demi( .   . ) |  2 |  * 2n  * | 1  0  2 0 | 2 0 1
. . sefa( sn/ds ) |  2 |  *  * 4n | 0  1  1 1 | 1 1 1
------------------+----+----------+-----------+------
x x demi( .   . ) |  4 |  2  2  0 | n  *  * * | 2 0 0
x . sefa( sn/ds ) |  4 |  2  0  2 | * 2n  * * | 1 1 0
. x sefa( sn/ds ) |  4 |  0  2  2 | *  * 2n * | 1 0 1
. .       sn/ds     n |  0  0  n | *  *  * 4 | 0 1 1
------------------+----+----------+-----------+------
x x sefa( sn/ds )   8 |  4  4  4 | 2  2  2 0 | n * *
x .       sn/ds    2n |  n  0 2n | 0  n  0 2 | * 2 *
. x       sn/ds    2n |  0  n 2n | 0  0  n 2 | * * 2

xx xx-n/d-oo&#x   (n>2)   → height = 1
({n/d}-p || {n/d}-p)

o. o.     o.    | 2n  * | 1  2  1 0  0 | 2 1 1  2 0 0 | 1 2 1 0
.o .o     .o    |  * 2n | 0  0  1 1  2 | 0 0 1  2 2 1 | 0 2 1 1
----------------+-------+--------------+--------------+--------
x. ..     ..    |  2  0 | n  *  * *  * | 2 0 1  0 0 0 | 1 2 0 0
.. x.     ..    |  2  0 | * 2n  * *  * | 1 1 0  1 0 0 | 1 1 1 0
oo oo-n/d-oo&#x |  1  1 | *  * 2n *  * | 0 0 1  2 0 0 | 0 2 1 0
.x ..     ..    |  0  2 | *  *  * n  * | 0 0 1  0 2 0 | 0 2 0 1
.. .x     ..    |  0  2 | *  *  * * 2n | 0 0 0  1 1 1 | 0 1 1 1
----------------+-------+--------------+--------------+--------
x. x.     ..    |  4  0 | 2  2  0 0  0 | n * *  * * * | 1 1 0 0
.. x.-n/d-o.    |  n  0 | 0  n  0 0  0 | * 2 *  * * * | 1 0 1 0
xx ..     ..&#x |  2  2 | 1  0  2 1  0 | * * n  * * * | 0 2 0 0
.. xx     ..&#x |  2  2 | 0  1  2 0  1 | * * * 2n * * | 0 1 1 0
.x .x     ..    |  0  4 | 0  0  0 2  2 | * * *  * n * | 0 1 0 1
.. .x-n/d-.o    |  0  n | 0  0  0 0  n | * * *  * * 2 | 0 0 1 1
----------------+-------+--------------+--------------+--------
x. x.-n/d-o.     2n  0 | n 2n  0 0  0 | n 2 0  0 0 0 | 1 * * *
xx xx     ..&#x   4  4 | 2  2  4 2  2 | 1 0 2  2 1 0 | * n * *
.. xx-n/d-oo&#x   n  n | 0  n  n 0  n | 0 1 0  n 0 1 | * * 2 *
.x .x-n/d-.o      0 2n | 0  0  0 n 2n | 0 0 0  0 n 2 | * * * 1

© 2004-2024
top of page