Acronym | 4,2n-dip |
Name | square - 2n-gon duoprism |
Circumradius | sqrt[1/2+1/(4 sin2(π/2n))] |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Face vector | 8n, 16n, 10n+4, 2n+4 |
Especially | tes (n=2) shiddip (n=3) sodip (n=4) squadedip (n=5) sitwadip (n=6) |
Confer |
|
External links |
Although in here n>1 is allowed, snubbing links require n>2 generally. Nonetheless, s4o2s4o well is possible too (it even becomes a regular polychoron), it just has a different incidence structure because of degeneracies.
Incidence matrix according to Dynkin symbol
x4o x2no (n>1) . . . . | 8n | 2 2 | 1 4 1 | 2 2 ---------+----+-------+---------+----- x . . . | 2 | 8n * | 1 2 0 | 2 1 . . x . | 2 | * 8n | 0 2 1 | 1 2 ---------+----+-------+---------+----- x4o . . | 4 | 4 0 | 2n * * | 2 0 x . x . | 4 | 2 2 | * 8n * | 1 1 . . x2no | 2n | 0 2n | * * 4 | 0 2 ---------+----+-------+---------+----- x4o x . ♦ 8 | 8 4 | 2 4 0 | 2n * x . x2no ♦ 4n | 2n 4n | 0 2n 2 | * 4 snubbed forms: s4o2s2no (for n>2)
x4o xnx (n>1) . . . . | 8n | 2 1 1 | 1 2 2 1 | 1 1 2 --------+----+----------+------------+------ x . . . | 2 | 8n * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 4n * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 4n | 0 0 2 1 | 0 1 2 --------+----+----------+------------+------ x4o . . | 4 | 4 0 0 | 2n * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 4n * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 4n * | 0 1 1 . . xnx | 2n | 0 n n | * * * 4 | 0 0 2 --------+----+----------+------------+------ x4o x . ♦ 8 | 8 4 0 | 2 4 0 0 | n * * x4o . x ♦ 8 | 8 0 4 | 2 0 4 0 | * n * x . xnx ♦ 4n | 2n 2n 2n | 0 n n 2 | * * 4 snubbed forms: s4o2snx (for even n>2), s4o2sns (for n>2)
x x x2no (n>1) . . . . | 8n | 1 1 2 | 1 2 2 1 | 2 1 1 ---------+----+----------+------------+------- x . . . | 2 | 4n * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 4n * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 8n | 0 1 1 1 | 1 1 1 ---------+----+----------+------------+------- x x . . | 4 | 2 2 0 | 2n * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 4n * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 4n * | 1 0 1 . . x2no | 2n | 0 0 2n | * * * 4 | 0 1 1 ---------+----+----------+------------+------- x x x . ♦ 8 | 4 4 4 | 2 2 2 0 | 2n * * x . x2no ♦ 4n | 2n 0 4n | 0 2n 0 2 | * 2 * . x x2no ♦ 4n | 0 2n 4n | 0 0 2n 2 | * * 2
x x xnx (n>1) . . . . | 8n | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+----+-------------+------------------+-------- x . . . | 2 | 4n * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 4n * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 4n * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 4n | 0 0 1 0 1 1 | 0 1 1 1 --------+----+-------------+------------------+-------- x x . . | 4 | 2 2 0 0 | 2n * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 2n * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 2n * * * | 0 1 1 0 . x x . | 4 | 0 2 2 0 | * * * 2n * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 2n * | 0 1 0 1 . . xnx | 2n | 0 0 n n | * * * * * 4 | 0 0 1 1 --------+----+-------------+------------------+-------- x x x . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 | n * * * x x . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 | * n * * x . xnx ♦ 4n | 2n 0 2n 2n | 0 n n 0 0 2 | * * 2 * . x xnx ♦ 4n | 0 2n 2n 2n | 0 0 0 n n 2 | * * * 2 snubbed forms: s2s2snx (for even n>2), s2s2sns (for n>2)
xx xx2noo&#x (n>1) → height = 1
({2n}-p || {2n}-p)
o. o.2no. | 4n * | 1 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0
.o .o2n.o | * 4n | 0 0 1 1 2 | 0 0 1 2 2 1 | 0 2 1 1
-------------+-------+----------------+-----------------+---------
x. .. .. | 2 0 | 2n * * * * | 2 0 1 0 0 0 | 1 2 0 0
.. x. .. | 2 0 | * 4n * * * | 1 1 0 1 0 0 | 1 1 1 0
oo oo2noo&#x | 1 1 | * * 4n * * | 0 0 1 2 0 0 | 0 2 1 0
.x .. .. | 0 2 | * * * 2n * | 0 0 1 0 2 0 | 0 2 0 1
.. .x .. | 0 2 | * * * * 4n | 0 0 0 1 1 1 | 0 1 1 1
-------------+-------+----------------+-----------------+---------
x. x. .. | 4 0 | 2 2 0 0 0 | 2n * * * * * | 1 1 0 0
.. x.2no. | 2n 0 | 0 2n 0 0 0 | * 2 * * * * | 1 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * 2n * * * | 0 2 0 0
.. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * 4n * * | 0 1 1 0
.x .x .. | 0 4 | 0 0 0 2 2 | * * * * 2n * | 0 1 0 1
.. .x2n.o | 0 2n | 0 0 0 0 2n | * * * * * 2 | 0 0 1 1
-------------+-------+----------------+-----------------+---------
x. x.2no. ♦ 4n 0 | 2n 4n 0 0 0 | 2n 2 0 0 0 0 | 1 * * *
xx xx ..&#x ♦ 4 4 | 2 2 4 2 2 | 1 0 2 2 1 0 | * 2n * *
.. xx2noo&#x ♦ 2n 2n | 0 2n 2n 0 2n | 0 1 0 2n 0 1 | * * 2 *
.x .x2n.o ♦ 0 4n | 0 0 0 2n 4n | 0 0 0 0 2n 2 | * * * 1
xx xxnxx&#x (n>1) → height = 1
({2n}-p || {2n}-p)
o. o. o. | 4n * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0
.o .o .o | * 4n | 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 1 1 1 1
------------+-------+----------------------+----------------------+----------
x. .. .. | 2 0 | 2n * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. x. .. | 2 0 | * 2n * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
.. .. x. | 2 0 | * * 2n * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo oonoo&#x | 1 1 | * * * 4n * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * * 2n * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1
.. .x .. | 0 2 | * * * * * 2n * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1
.. .. .x | 0 2 | * * * * * * 2n | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
------------+-------+----------------------+----------------------+----------
x. x. .. | 4 0 | 2 2 0 0 0 0 0 | n * * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 0 2 0 0 0 0 | * n * * * * * * * | 1 0 1 0 0
.. x.nx. | 2n 0 | 0 3 3 0 0 0 0 | * * 2 * * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 0 2 1 0 0 | * * * 2n * * * * * | 0 1 1 0 0
.. xx ..&#x | 2 2 | 0 1 0 2 0 1 0 | * * * * 2n * * * * | 0 1 0 1 0
.. .. xx&#x | 2 2 | 0 0 1 2 0 0 1 | * * * * * 2n * * * | 0 0 1 1 0
.x .x .. | 0 4 | 0 0 0 0 2 2 0 | * * * * * * n * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * n * | 0 0 1 0 1
.. .xn.x | 0 2n | 0 0 0 0 0 3 3 | * * * * * * * * 2 | 0 0 0 1 1
------------+-------+----------------------+----------------------+----------
x. x.nx. ♦ 4n 0 | 2n 2n 2n 0 0 0 0 | n n 2 0 0 0 0 0 0 | 1 * * * *
xx xx ..&#x ♦ 4 4 | 2 2 0 4 2 2 0 | 1 0 0 2 2 0 1 0 0 | * n * * *
xx .. xx&#x ♦ 4 4 | 2 0 2 4 2 0 2 | 0 1 0 2 0 2 0 1 0 | * * n * *
.. xxnxx&#x ♦ 2n 2n | 0 n n 2n 0 n n | 0 0 1 0 3 3 0 0 1 | * * * 2 *
.x .xn.x ♦ 0 4n | 0 0 0 0 2n 2n 2n | 0 0 0 0 0 0 n n 2 | * * * * 1
© 2004-2025 | top of page |