Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

Ridge-facetings of the great dirhombicosidodecahedron ship   (part 2)

Possible facets here are the 24 pentagrams, 40 triangles, and 60 squares of the comodore itself together with 120 more internal triangles. The general naming code here is accordingly gidrid-#{5/2}-#{3}-#{4}. This gives rise for exactly 406 (pure polyhedral) edge-facetings with n-gonal axial rotation symmetries, provided n = 5 (plus uncounted compounds). In fact, 1 polyhedral ones has full icosahedral symmetry, 1 polyhedral ones has chiral icosahedral symmetry, 10 have 5-fold pyramidal symmetry, 250 have 5-fold chiral pyramidal symmetry, 15 have 5-fold antiprismatic symmetry, 9 have 5-fold chiral antiprismatic symmetry (i.e. anti-aligned orientations of base margins), 120 have 5-fold rotational glyde reflection symmetry (i.e. aligned orientations of base margins) 1 has octahedral symmetry, 1 has tetrahedral symmetry. And a total of 117 800 ridge-facetings have some 3-fold symmetry. Only the highest symmetrical compounds, the icosahedral symmetric dasi (compound of 20 octs) and the chiral icosahedral symmetric sapisseri (compound of 20 thahs), are being displayed additionally. It appears that any 5-fold faceting contains all the 24 pentagrams.

Due to its amount this page is being split into parts. The following parts are available:

  1. part : full icosahedral, chiral icosahedral, 5-fold pyramidal, and 5-fold antiprismatic symmetry
  2. part (this page) : 5-fold antiprismatic (continued), 5-fold chiral antiprismatic, 5-fold chiral pyramidal, and 5-fold rotational glyde reflection symmetry

The octahedral symmetric case clearly is oct itself and the tetrahedral symmetric one is thah. Those 2 and all other 117 798 cases with 3-fold symmetries, which then again contain all the 24 pentagrams, had only been counted by means of a computer research, cf. the article Axial-Symmetrical Edge-Facetings of Uniform Polyhedra. Neither a picture, nor a VRML, nor its mere code is being provided for obvious reason. – Even for the 2 last large groups of 5-fold symmetries only their VRML file, linked by its respective naming code, is being provided in list form so far.


<< continue
gidrid-24-40-40-v2 gidrid-24-40-40-v6 gidrid-24-40-40-v25 gidrid-24-40-40-v26 gidrid-24-40-40-v30 gidrid-24-60-10-v43 gidrid-24-60-10-v44 gidrid-24-60-10-v48
... 5-fold antiprismatic 5-fold chiral antiprismatic ...
gidrid-24-50-15-v1
gidrid-24-50-15-v2
gidrid-24-50-15-v3
gidrid-24-50-15-v4
gidrid-24-50-15-v5
gidrid-24-50-15-v6
gidrid-24-50-15-v7
gidrid-24-50-15-v8
gidrid-24-50-15-v9
gidrid-24-50-15-v10
gidrid-24-50-15-v11
gidrid-24-50-15-v12
gidrid-24-50-15-v13
gidrid-24-50-15-v14
gidrid-24-50-15-v15
gidrid-24-50-15-v16
gidrid-24-50-15-v17
gidrid-24-50-15-v18
gidrid-24-50-15-v19
gidrid-24-50-15-v20
gidrid-24-50-15-v21
gidrid-24-50-15-v22
gidrid-24-50-15-v23
gidrid-24-50-15-v24
gidrid-24-50-15-v25
gidrid-24-50-15-v26
gidrid-24-50-15-v27
gidrid-24-50-15-v28
gidrid-24-50-15-v29
gidrid-24-50-15-v30
gidrid-24-50-15-v31
gidrid-24-50-15-v32
gidrid-24-50-15-v33
gidrid-24-50-15-v34
gidrid-24-50-15-v35
gidrid-24-50-15-v36
gidrid-24-50-15-v37
gidrid-24-50-15-v38
gidrid-24-50-15-v39
gidrid-24-50-15-v40
gidrid-24-50-15-v41
gidrid-24-50-15-v42
gidrid-24-50-15-v43
gidrid-24-50-15-v44
gidrid-24-60-10-v51 gidrid-24-60-10-v52 gidrid-24-60-10-v60 gidrid-24-60-30-v12 gidrid-24-60-30-v14 gidrid-24-80-0-v6
... 5-fold chiral antiprismatic 5-fold chiral pyramidal ...
gidrid-24-50-15-v45
gidrid-24-50-15-v46
gidrid-24-50-15-v47
gidrid-24-50-15-v48
gidrid-24-50-15-v49
gidrid-24-50-15-v50
gidrid-24-50-15-v51
gidrid-24-50-15-v52
gidrid-24-50-15-v53
gidrid-24-50-15-v54
gidrid-24-50-25-v1
gidrid-24-50-25-v2
gidrid-24-50-25-v3
gidrid-24-50-25-v4
gidrid-24-50-25-v5
gidrid-24-50-25-v6
gidrid-24-50-25-v7
gidrid-24-50-25-v8
gidrid-24-50-25-v9
gidrid-24-50-25-v10
gidrid-24-50-25-v11
gidrid-24-50-25-v12
gidrid-24-50-25-v13
gidrid-24-50-25-v14
gidrid-24-50-25-v15
gidrid-24-50-25-v16
gidrid-24-50-25-v17
gidrid-24-50-25-v18
gidrid-24-50-25-v19
gidrid-24-50-25-v20
gidrid-24-50-25-v21
gidrid-24-50-25-v22
gidrid-24-50-25-v23
gidrid-24-50-25-v24
gidrid-24-50-25-v25
gidrid-24-50-25-v26
gidrid-24-50-25-v27
gidrid-24-50-25-v28
gidrid-24-50-25-v29
gidrid-24-50-25-v30
gidrid-24-50-25-v31
gidrid-24-50-25-v32
gidrid-24-50-25-v33
gidrid-24-50-25-v34
gidrid-24-50-25-v35
gidrid-24-50-25-v36
gidrid-24-50-25-v37
gidrid-24-50-25-v38
gidrid-24-50-25-v39
gidrid-24-50-25-v40
gidrid-24-50-25-v41
gidrid-24-50-25-v42
gidrid-24-50-25-v43
gidrid-24-50-25-v44
gidrid-24-50-25-v45
gidrid-24-50-35-v1
gidrid-24-50-35-v2
gidrid-24-50-35-v3
gidrid-24-50-35-v4
gidrid-24-50-35-v5
gidrid-24-50-35-v6
gidrid-24-50-35-v7
gidrid-24-50-35-v8
gidrid-24-50-35-v9
gidrid-24-50-35-v10
gidrid-24-50-35-v11
gidrid-24-50-35-v12
gidrid-24-50-35-v13
gidrid-24-50-35-v14
gidrid-24-50-35-v15
gidrid-24-50-35-v16
gidrid-24-50-35-v17
gidrid-24-50-35-v18
gidrid-24-50-35-v19
gidrid-24-50-35-v20
gidrid-24-50-35-v21
gidrid-24-50-35-v22
gidrid-24-50-35-v23
gidrid-24-50-35-v24
gidrid-24-50-45-v1
gidrid-24-50-45-v2
gidrid-24-50-45-v3
gidrid-24-50-45-v4
gidrid-24-50-45-v5
gidrid-24-60-10-v3
gidrid-24-60-10-v4
gidrid-24-60-10-v5
gidrid-24-60-10-v7
gidrid-24-60-10-v8
gidrid-24-60-10-v9
gidrid-24-60-10-v10
gidrid-24-60-10-v11
gidrid-24-60-10-v12
gidrid-24-60-10-v13
gidrid-24-60-10-v14
gidrid-24-60-10-v15
gidrid-24-60-10-v16
gidrid-24-60-10-v17
gidrid-24-60-10-v18
gidrid-24-60-10-v19
gidrid-24-60-10-v20
gidrid-24-60-10-v21
gidrid-24-60-10-v22
gidrid-24-60-10-v23
gidrid-24-60-10-v24
gidrid-24-60-10-v25
gidrid-24-60-10-v26
gidrid-24-60-10-v27
gidrid-24-60-10-v28
gidrid-24-60-10-v29
gidrid-24-60-10-v30
gidrid-24-60-10-v31
gidrid-24-60-10-v32
gidrid-24-60-10-v33
gidrid-24-60-10-v34
gidrid-24-60-10-v35
gidrid-24-60-10-v36
gidrid-24-60-10-v37
gidrid-24-60-10-v38
gidrid-24-60-10-v39
gidrid-24-60-10-v40
gidrid-24-60-10-v41
gidrid-24-60-10-v42
gidrid-24-60-10-v43
gidrid-24-60-10-v44
gidrid-24-60-10-v45
gidrid-24-60-10-v46
gidrid-24-60-10-v47
gidrid-24-60-10-v53
gidrid-24-60-10-v54
gidrid-24-60-10-v55
gidrid-24-60-10-v56
gidrid-24-60-10-v57
gidrid-24-60-10-v58
gidrid-24-60-20-v1
gidrid-24-60-20-v2
gidrid-24-60-20-v3
gidrid-24-60-20-v4
gidrid-24-60-20-v5
gidrid-24-60-20-v6
gidrid-24-60-20-v7
gidrid-24-60-20-v8
gidrid-24-60-20-v9
gidrid-24-60-20-v10
gidrid-24-60-20-v11
gidrid-24-60-20-v12
gidrid-24-60-20-v13
gidrid-24-60-20-v14
gidrid-24-60-20-v15
gidrid-24-60-20-v16
gidrid-24-60-20-v17
gidrid-24-60-20-v18
gidrid-24-60-20-v19
gidrid-24-60-20-v20
gidrid-24-60-20-v21
gidrid-24-60-20-v22
gidrid-24-60-20-v23
gidrid-24-60-20-v24
gidrid-24-60-20-v25
gidrid-24-60-20-v26
gidrid-24-60-20-v27
gidrid-24-60-20-v28
gidrid-24-60-20-v29
gidrid-24-60-20-v30
gidrid-24-60-30-v2
gidrid-24-60-30-v3
gidrid-24-60-30-v4
gidrid-24-60-30-v5
gidrid-24-60-30-v6
gidrid-24-60-30-v7
gidrid-24-60-30-v8
gidrid-24-60-30-v9
gidrid-24-60-30-v10
gidrid-24-60-30-v11
gidrid-24-70-5-v1
gidrid-24-70-5-v2
... 5-fold chiral pyramidal ...
gidrid-24-70-5-v3
gidrid-24-70-5-v4
gidrid-24-70-5-v5
gidrid-24-70-5-v6
gidrid-24-70-5-v7
gidrid-24-70-5-v8
gidrid-24-70-5-v9
gidrid-24-70-5-v10
gidrid-24-70-5-v11
gidrid-24-70-5-v12
gidrid-24-70-5-v13
gidrid-24-70-5-v14
gidrid-24-70-5-v15
gidrid-24-70-5-v16
gidrid-24-70-5-v17
gidrid-24-70-5-v18
gidrid-24-70-5-v19
gidrid-24-70-5-v20
gidrid-24-70-5-v21
gidrid-24-70-5-v22
gidrid-24-70-5-v23
gidrid-24-70-5-v24
gidrid-24-70-15-v1
gidrid-24-70-15-v2
gidrid-24-70-15-v3
gidrid-24-70-15-v4
gidrid-24-70-15-v5
gidrid-24-70-15-v6
gidrid-24-70-15-v7
gidrid-24-70-15-v8
gidrid-24-80-0-v2
gidrid-24-80-0-v4
gidrid-24-40-20-v3
gidrid-24-40-20-v4
gidrid-24-40-20-v5
gidrid-24-40-20-v6
gidrid-24-40-20-v9
gidrid-24-40-20-v10
gidrid-24-40-20-v13
gidrid-24-40-20-v14
gidrid-24-40-20-v15
gidrid-24-40-20-v16
gidrid-24-40-20-v17
gidrid-24-40-20-v18
gidrid-24-40-20-v19
gidrid-24-40-20-v20
gidrid-24-40-20-v21
gidrid-24-40-20-v22
gidrid-24-40-20-v23
gidrid-24-40-20-v24
gidrid-24-40-20-v25
gidrid-24-40-20-v26
gidrid-24-40-20-v27
gidrid-24-40-20-v28
gidrid-24-40-20-v29
gidrid-24-40-20-v30
gidrid-24-40-20-v31
gidrid-24-40-20-v32
gidrid-24-40-20-v33
gidrid-24-40-20-v34
gidrid-24-40-20-v35
gidrid-24-40-20-v36
gidrid-24-40-20-v37
gidrid-24-40-20-v38
gidrid-24-40-20-v39
gidrid-24-40-20-v42
gidrid-24-40-20-v43
gidrid-24-40-20-v44
gidrid-24-40-30-v1
gidrid-24-40-30-v2
gidrid-24-40-30-v3
gidrid-24-40-30-v4
gidrid-24-40-30-v5
gidrid-24-40-30-v6
gidrid-24-40-30-v7
gidrid-24-40-30-v8
gidrid-24-40-30-v9
gidrid-24-40-30-v10
gidrid-24-40-30-v11
gidrid-24-40-30-v12
gidrid-24-40-30-v13
gidrid-24-40-30-v14
gidrid-24-40-30-v15
gidrid-24-40-30-v16
gidrid-24-40-30-v17
gidrid-24-40-30-v18
gidrid-24-40-30-v19
gidrid-24-40-30-v20
gidrid-24-40-30-v21
gidrid-24-40-30-v22
gidrid-24-40-30-v23
gidrid-24-40-30-v24
gidrid-24-40-30-v25
gidrid-24-40-30-v26
gidrid-24-40-30-v27
gidrid-24-40-30-v28
gidrid-24-40-30-v29
gidrid-24-40-30-v30
gidrid-24-40-30-v31
gidrid-24-40-30-v32
gidrid-24-40-30-v33
gidrid-24-40-30-v34
gidrid-24-40-30-v35
gidrid-24-40-30-v36
gidrid-24-40-30-v37
gidrid-24-40-30-v38
gidrid-24-40-30-v39
gidrid-24-40-30-v40
gidrid-24-40-30-v41
gidrid-24-40-30-v42
gidrid-24-40-30-v43
gidrid-24-40-30-v44
gidrid-24-40-30-v45
gidrid-24-40-30-v46
gidrid-24-40-30-v47
gidrid-24-40-30-v48
gidrid-24-40-30-v49
gidrid-24-40-30-v50
gidrid-24-40-30-v51
gidrid-24-40-30-v52
gidrid-24-40-30-v53
gidrid-24-40-30-v54
gidrid-24-40-40-v3
gidrid-24-40-40-v4
gidrid-24-40-40-v5
gidrid-24-40-40-v7
gidrid-24-40-40-v8
gidrid-24-40-40-v9
gidrid-24-40-40-v10
gidrid-24-40-40-v11
gidrid-24-40-40-v12
gidrid-24-40-40-v13
gidrid-24-40-40-v14
gidrid-24-40-40-v15
gidrid-24-40-40-v16
gidrid-24-40-40-v17
gidrid-24-40-40-v18
gidrid-24-40-40-v19
gidrid-24-40-40-v20
gidrid-24-40-40-v21
gidrid-24-40-40-v22
gidrid-24-40-40-v23
gidrid-24-40-40-v24
gidrid-24-40-40-v27
gidrid-24-40-40-v28
gidrid-24-40-40-v29
gidrid-24-40-50-v1
gidrid-24-40-50-v2
gidrid-24-40-50-v3
gidrid-24-40-50-v4
gidrid-24-40-50-v5
gidrid-24-40-50-v6
... 5-fold chiral pyramidal 5-fold rotational glyde reflection

© 2004-2024
top of page