Acronym ...
Name Shephard's p-generalised tesseract,
complex polychoron xp-4-o2-3-o2-3-o2,
γp4
 
   ©
p=3                           p=4                         p=5
Vertex figure tet
Coordinates pn, εpm, εpk, εpl)   for any 1≤n,m,k,l≤p, where εp=exp(2πi/p)
Dual x2-3-o2--3-o2-4-op
Face vector p4, 4p3, 6p2, 4p
Especially x3-4-o2-3-o2-3-o2 (p=3)   x4-4-o2-3-o2-3-o2 (p=4)   x5-4-o2-3-o2-3-o2 (p=5)  
Confer
real space embedding:
(p,p,p,p)-quadprism
general polytopal classes:
complex polytopes  
External
links
wikipedia  

The (complex) faces are xp-4-o2, the (complex) cells are xp-4-o2-3-o2, and the vertex figure here throughout is just x2-3-o2-3-o2, i.e. nothing but the real space tet.

Those polytopes happen to be the (complex) 4-dimensional versions of Shephard's generalised hypercubes. For sure, p=2 not only returns into the real subspace only, but moreover becomes nothing but the well-known tes.

The below various incidence representations are direct, next dimensional consequences from what was explained already at xp-4-o2 = xp   xp. I.e. the according cartesian or prism product applies for complex polytopes alike. In fact, these complex polychora simply re-use the even-dimensional elements of all the p-gons, (p,p)-dips, and (p,p,p)-tips from this real quadprism only.


Incidence matrix according to Dynkin symbol

xp-4-o2-3-o2-3-o2

.    .    .    .  | p4   4  |  6  |  4
-----------------+----+-----+-----+---
xp   .    .    .  | p  | 4p3 |  3  |  3
-----------------+----+-----+-----+---
xp-4-o2   .    .   p2 | 2p  | 6p2 |  2
-----------------+----+-----+-----+---
xp-4-o2-3-o2   .   p3 | 3p2 | 3p  | 4p

snubbed forms: sp-4-o2-3-o2-3-o2

xp   xp-4-o2-3-o2

.    .    .    .  | p4  1   3  |  3   3  |  3 1
-----------------+----+--------+---------+-----
xp   .    .    .  | p  | p3  *  |  3   0  |  3 0
.    xp   .    .  | p  | *  3p3 |  1   2  |  2 1
-----------------+----+--------+---------+-----
xp   xp   .    .   p2 | p   p  | 3p2  *  |  2 0
.    xp-4-o2   .   p2 | 0  2p  |  *  3p2 |  1 1
-----------------+----+--------+---------+-----
xp   xp-4-o2   .   p3 | p2 2p2 | 2p   p  | 3p *
.    xp-4-o2-3-o2  p3 | 0  3p2 |  0  3p  |  * p

xp-4-o2   xp-4-o2

.    .    .    .  | p4   2   2  | 1   4  1  |  2  2
-----------------+----+---------+-----------+------
xp   .    .    .  | p  | 2p3  *  | 1   2  0  |  2  1
.    .    xp   .  | p  |  *  2p3 | 0   2  1  |  1  2
-----------------+----+---------+-----------+------
xp-4-o2   .    .   p2 | 2p   0  | p2  *  *  |  2  0
xp   .    xp   .   p2 |  p   p  | *  4p2 *  |  1  1
.    .    xp-4-o2  p2 |  0  2p  | *   *  p2 |  0  2
-----------------+----+---------+-----------+------
xp-4-o2   xp   .   p3 | 2p2  p2 | p  2p  0  | 2p  *
xp   .    xp-4-o2  p3 |  p2 2p2 | 0  2p  p  |  * 2p

xp   xp   xp-4-o2

.    .    .    .  | p4  1  1   2  | 1   2   2  1  |  2 1 1
-----------------+----+-----------+--------------+-------
xp   .    .    .  | p  | p3 *   *  | 1   2   0  0  |  2 1 0
.    xp   .    .  | p  | *  p3  *  | 1   0   2  0  |  2 0 1
.    .    xp   .  | p  | *  *  2p3 | 0   1   1  1  |  1 1 1
-----------------+----+-----------+--------------+-------
xp   xp   .    .   p2 | p  p   0  | p2  *   *  *  |  2 0 0
xp   .    xp   .   p2 | p  0   p  | *  2p2  *  *  |  1 1 0
.    xp   xp   .   p2 | 0  p   p  | *   *  2p2 *  |  1 0 1
.    .    xp-4-o2  p2 | 0  0  2p  | *   *   *  p2 |  0 1 1
-----------------+----+-----------+--------------+-------
xp   xp   xp   .   p3 | p2 p2  p2 | p   p   p  0  | 2p * *
xp   .    xp-4-o2  p3 | p2 0  2p2 | 0  2p   0  p  |  * p *
.    xp   xp-4-o2  p3 | 0  p2 2p2 | 0   0  2p  p  |  * * p

xp   xp   xp   xp

.    .    .    .  | p4  1  1  1  1  | 1  1  1  1  1  1  | 1 1 1 1
-----------------+----+-------------+------------------+--------
xp   .    .    .  | p  | p3 *  *  *  | 1  1  1  0  0  0  | 1 1 1 0
.    xp   .    .  | p  | *  p3 *  *  | 1  0  0  1  1  0  | 1 1 0 1
.    .    xp   .  | p  | *  *  p3 *  | 0  1  0  1  0  1  | 1 0 1 1
.    .    .    xp | p  | *  *  *  p3 | 0  0  1  0  1  1  | 0 1 1 1
-----------------+----+-------------+------------------+--------
xp   xp   .    .   p2 | p  p  0  0  | p2 *  *  *  *  *  | 1 1 0 0
xp   .    xp   .   p2 | p  0  p  0  | *  p2 *  *  *  *  | 1 0 1 0
xp   .    .    xp  p2 | p  0  0  p  | *  *  p2 *  *  *  | 0 1 1 0
.    xp   xp   .   p2 | 0  p  p  0  | *  *  *  p2 *  *  | 1 0 0 1
.    xp   .    xp  p2 | 0  p  0  p  | *  *  *  *  p2 *  | 0 1 0 1
.    .    xp   xp  p2 | 0  0  p  p  | *  *  *  *  *  p2 | 0 0 1 1
-----------------+----+-------------+------------------+--------
xp   xp   xp   .   p3 | p2 p2 p2 0  | p  p  0  p  0  0  | p * * *
xp   xp   .    xp  p3 | p2 p2 0  p2 | p  0  p  0  p  0  | * p * *
xp   .    xp   xp  p3 | p2 0  p2 p2 | 0  p  p  0  0  p  | * * p *
.    xp   xp   xp  p3 | 0  p2 p2 p2 | 0  0  0  p  p  p  | * * * p

© 2004-2024
top of page