Acronym squasirco Name square - small-rhombicuboctahedron duoprism Circumradius sqrt[7+2 sqrt(2)]/2 = 1.567516 Volume [12+10 sqrt(2)]/3 = 8.714045 Confer more general: n,sirco-dip   general polytopal classes: segmentotera Externallinks

Incidence matrix according to Dynkin symbol

```x4o x3o4x

. . . . . | 96 |  2  2  2 |  1  4  4  1  2  1 |  2  2  2  4  2 1 | 1  2 1 2
----------+----+----------+-------------------+------------------+---------
x . . . . |  2 | 96  *  * |  1  2  2  0  0  0 |  2  2  1  2  1 0 | 1  2 1 1
. . x . . |  2 |  * 96  * |  0  2  0  1  1  0 |  1  0  2  2  0 1 | 1  1 0 2
. . . . x |  2 |  *  * 96 |  0  0  2  0  1  1 |  0  1  0  2  2 1 | 0  1 1 2
----------+----+----------+-------------------+------------------+---------
x4o . . . |  4 |  4  0  0 | 24  *  *  *  *  * |  2  2  0  0  0 0 | 1  2 1 0
x . x . . |  4 |  2  2  0 |  * 96  *  *  *  * |  1  0  1  1  0 0 | 1  1 0 1
x . . . x |  4 |  2  0  2 |  *  * 96  *  *  * |  0  1  0  1  1 0 | 0  1 1 1
. . x3o . |  3 |  0  3  0 |  *  *  * 32  *  * |  0  0  2  0  0 1 | 1  0 0 2
. . x . x |  4 |  0  2  2 |  *  *  *  * 48  * |  0  0  0  2  0 1 | 0  1 0 2
. . . o4x |  4 |  0  0  4 |  *  *  *  *  * 24 |  0  0  0  0  2 1 | 0  0 1 2
----------+----+----------+-------------------+------------------+---------
x4o x . . ♦  8 |  8  4  0 |  2  4  0  0  0  0 | 24  *  *  *  * * | 1  1 0 0
x4o . . x ♦  8 |  8  0  4 |  2  0  4  0  0  0 |  * 24  *  *  * * | 0  1 1 0
x . x3o . ♦  6 |  3  6  0 |  0  3  0  2  0  0 |  *  * 32  *  * * | 1  0 0 1
x . x . x ♦  8 |  4  4  4 |  0  2  2  0  2  0 |  *  *  * 48  * * | 0  1 0 1
x . . o4x ♦  8 |  4  0  8 |  0  0  4  0  0  2 |  *  *  *  * 24 * | 0  0 1 1
. . x3o4x ♦ 24 |  0 24 24 |  0  0  0  8 12  6 |  *  *  *  *  * 4 | 0  0 0 2
----------+----+----------+-------------------+------------------+---------
x4o x3o . ♦ 12 | 12 12  0 |  3 12  0  4  0  0 |  3  0  4  0  0 0 | 8  * * *
x4o x . x ♦ 16 | 16  8  8 |  4  8  8  0  4  0 |  2  2  0  4  0 0 | * 12 * *
x4o . o4x ♦ 16 | 16  0 16 |  4  0 16  0  0  4 |  0  4  0  0  4 0 | *  * 6 *
x . x3o4x ♦ 48 | 24 48 48 |  0 24 24 16 24 12 |  0  0  8 12  6 2 | *  * * 4
```

```x x x3o4x

. . . . . | 96 |  1  1  2  2 |  1  2  2  2  2  1  2  1 |  2  2  1  2  1  1  2  1 1 | 1  2 1 1 1
----------+----+-------------+-------------------------+---------------------------+-----------
x . . . . |  2 | 48  *  *  * |  1  2  2  0  0  0  0  0 |  2  2  1  2  1  0  0  0 0 | 1  2 1 1 0
. x . . . |  2 |  * 48  *  * |  1  0  0  2  2  0  0  0 |  2  2  0  0  0  1  2  1 0 | 1  2 1 0 1
. . x . . |  2 |  *  * 96  * |  0  1  0  1  0  1  1  0 |  1  0  1  1  0  1  1  0 1 | 1  1 0 1 1
. . . . x |  2 |  *  *  * 96 |  0  0  1  0  1  0  1  1 |  0  1  0  1  1  0  1  1 1 | 0  1 1 1 1
----------+----+-------------+-------------------------+---------------------------+-----------
x x . . . |  4 |  2  2  0  0 | 24  *  *  *  *  *  *  * |  2  2  0  0  0  0  0  0 0 | 1  2 1 0 0
x . x . . |  4 |  2  0  2  0 |  * 48  *  *  *  *  *  * |  1  0  1  1  0  0  0  0 0 | 1  1 0 1 0
x . . . x |  4 |  2  0  0  2 |  *  * 48  *  *  *  *  * |  0  1  0  1  1  0  0  0 0 | 0  1 1 1 0
. x x . . |  4 |  0  2  2  0 |  *  *  * 48  *  *  *  * |  1  0  0  0  0  1  1  0 0 | 1  1 0 0 1
. x . . x |  4 |  0  2  0  2 |  *  *  *  * 48  *  *  * |  0  1  0  0  0  0  1  1 0 | 0  1 1 0 1
. . x3o . |  3 |  0  0  3  0 |  *  *  *  *  * 32  *  * |  0  0  1  0  0  1  0  0 1 | 1  0 0 1 1
. . x . x |  4 |  0  0  2  2 |  *  *  *  *  *  * 48  * |  0  0  0  1  0  0  1  0 1 | 0  1 0 1 1
. . . o4x |  4 |  0  0  0  4 |  *  *  *  *  *  *  * 24 |  0  0  0  0  1  0  0  1 1 | 0  0 1 1 1
----------+----+-------------+-------------------------+---------------------------+-----------
x x x . . ♦  8 |  4  4  4  0 |  2  2  0  2  0  0  0  0 | 24  *  *  *  *  *  *  * * | 1  1 0 0 0
x x . . x ♦  8 |  4  4  0  4 |  2  0  2  0  2  0  0  0 |  * 24  *  *  *  *  *  * * | 0  1 1 0 0
x . x3o . ♦  6 |  3  0  6  0 |  0  3  0  0  0  2  0  0 |  *  * 16  *  *  *  *  * * | 1  0 0 1 0
x . x . x ♦  8 |  4  0  4  4 |  0  2  2  0  0  0  2  0 |  *  *  * 24  *  *  *  * * | 0  1 0 1 0
x . . o4x ♦  8 |  4  0  0  8 |  0  0  4  0  0  0  0  2 |  *  *  *  * 12  *  *  * * | 0  0 1 1 0
. x x3o . ♦  6 |  0  3  6  0 |  0  0  0  3  0  2  0  0 |  *  *  *  *  * 16  *  * * | 1  0 0 0 1
. x x . x ♦  8 |  0  4  4  4 |  0  0  0  2  2  0  2  0 |  *  *  *  *  *  * 24  * * | 0  1 0 0 1
. x . o4x ♦  8 |  0  4  0  8 |  0  0  0  0  4  0  0  2 |  *  *  *  *  *  *  * 12 * | 0  0 1 0 1
. . x3o4x ♦ 24 |  0  0 24 24 |  0  0  0  0  0  8 12  6 |  *  *  *  *  *  *  *  * 4 | 0  0 0 1 1
----------+----+-------------+-------------------------+---------------------------+-----------
x x x3o . ♦ 12 |  6  6 12  0 |  3  6  0  6  0  4  0  0 |  3  0  2  0  0  2  0  0 0 | 8  * * * *
x x x . x ♦ 16 |  8  8  8  8 |  4  4  4  4  4  0  4  0 |  2  2  0  2  0  0  2  0 0 | * 12 * * *
x x . o4x ♦ 16 |  8  8  0 16 |  4  0  8  0  8  0  0  4 |  0  4  0  0  2  0  0  2 0 | *  * 6 * *
x . x3o4x ♦ 48 | 24  0 48 48 |  0 24 24  0  0 16 24 12 |  0  0  8 12  6  0  0  0 2 | *  * * 2 *
. x x3o4x ♦ 48 |  0 24 48 48 |  0  0  0 24 24 16 24 12 |  0  0  0  0  0  8 12  6 2 | *  * * * 2

snubbed forms: x2s2x3o4s
```