Acronym tispid Name truncated small prismated decachoron Circumradius sqrt(y2+3y+3) Confer extremal cases: spid   respid   general polytopal classes: isogonal Externallinks

Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size q=sqrt(2). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in respid, while y → ∞ results again in the pre-image spid (rescaled back down accordingly).

Incidence matrix according to Dynkin symbol

```by3ox3xo3yb&#zq   → height = 0
y > 0 (depending on truncation depth)
b = y+2 (pseudo)
(q-laced tegum sum of 2 inverted (b,x,y)-prips)

o.3o.3o.3o.     & | 120 |   2  1   2 |  1  2  2   3 |  1  3  1
------------------+-----+------------+--------------+---------
.. .. x. ..     & |   2 | 120  *   * |  1  1  0   1 |  1  1  1  x
.. .. .. y.     & |   2 |   * 60   * |  0  2  2   0 |  1  3  0  y
oo3oo3oo3oo&#q    |   2 |   *  * 120 |  0  0  1   2 |  0  2  1  q
------------------+-----+------------+--------------+---------
.. o.3x. ..     & |   3 |   3  0   0 | 40  *  *   * |  1  0  1  x-{3}
.. .. x.3y.     & |   6 |   3  3   0 |  * 40  *   * |  1  1  0  (x,y)-{6}
by .. .. yb&#zq   |   8 |   0  4   4 |  *  * 30   * |  0  2  0  (y,q)-{8}
.. ox .. ..&#q  & |   3 |   1  0   2 |  *  *  * 120 |  0  1  1  xqq
------------------+-----+------------+--------------+---------
.. o.3x.3y.     & |  12 |  12  6   0 |  4  4  0   0 | 10  *  *  (x,y)-tut
by3ox .. yb&#zq & |  18 |   6  9  12 |  0  2  3   6 |  * 20  *  trunc-trip
.. ox3xo ..&#q    |   6 |   6  0   6 |  2  0  0   6 |  *  * 20  tall (x,q)-3ap
```