Acronym respid
Name rectified small prismated decachoron
Net
 ©    ©
Circumradius sqrt(3) = 1.732051
Face vector 60, 240, 230, 50
Confer
ambification pre-image:
spid  
general polytopal classes:
isogonal  
External
links
hedrondude   polytopewiki  

Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of spid all edges belong to a single orbit of symmetry, i.e. rectification clearly is applicable, without any recourse to Conway's ambification (chosing the former edge centers generally).

Still, because the pre-image uses different polygonal faces, this would result in 2 different edge sizes in the outcome polychoron. That one here is scaled such so that the shorter one becomes unity. Then the larger edge will have size q=sqrt(2).


Incidence matrix according to Dynkin symbol

((uo3ox3xo3ou))&#zq   → height = 0
                        u = 2 (pseudo)
(q-laced tegum sum of 2 inverted (u,x)-srips)

  o.3o.3o.3o.       | 30  * |  4   4  0 |  2  2  2  2  4  0  0 | 1  1  2  2 0
  .o3.o3.o3.o       |  * 30 |  0   4  4 |  0  0  2  4  2  2  2 | 0  2  1  2 1
--------------------+-------+-----------+----------------------+-------------
  .. .. x. ..       |  2  0 | 60   *  * |  1  1  0  0  1  0  0 | 1  0  1  1 0
  oo3oo3oo3oo  &#q  |  1  1 |  * 120  * |  0  0  1  1  1  0  0 | 0  1  1  1 0
  .. .x .. ..       |  0  2 |  *   * 60 |  0  0  0  1  0  1  1 | 0  1  0  1 1
--------------------+-------+-----------+----------------------+-------------
  .. o.3x. ..       |  3  0 |  3   0  0 | 20  *  *  *  *  *  * | 1  0  0  1 0  x-{3}
  .. .. x.3o.       |  3  0 |  3   0  0 |  * 20  *  *  *  *  * | 1  0  1  0 0  x-{3}
((uo .. .. ou))&#zq |  2  2 |  0   4  0 |  *  * 30  *  *  *  * | 0  1  1  0 0  q-{4}
  .. ox .. ..  &#q  |  1  2 |  0   2  1 |  *  *  * 60  *  *  * | 0  1  0  1 0  xqq
  .. .. xo ..  &#q  |  2  1 |  1   2  0 |  *  *  *  * 60  *  * | 0  0  1  1 0  xqq
  .o3.x .. ..       |  0  3 |  0   0  3 |  *  *  *  *  * 20  * | 0  1  0  0 1  x-{3}
  .. .x3.o ..       |  0  3 |  0   0  3 |  *  *  *  *  *  * 20 | 0  0  0  1 1  x-{3}
--------------------+-------+-----------+----------------------+-------------
  .. o.3x.3o.         6  0 | 12   0  0 |  4  4  0  0  0  0  0 | 5  *  *  * *  red
((uo3ox .. ou))&#zq   3  6 |  0  12  6 |  0  0  3  6  0  2  0 | * 10  *  * *  blue
((uo .. xo3ou))&#zq   6  3 |  6  12  0 |  0  2  3  0  6  0  0 | *  * 10  * *  blue
  .. ox3xo ..  &#q    3  3 |  3   6  3 |  1  0  0  3  3  0  1 | *  *  * 20 *  yellow : verf(spid)
  .o3.x3.o ..         0  6 |  0   0 12 |  0  0  0  0  0  4  4 | *  *  *  * 5  red
or
  o.3o.3o.3o.       & | 60 |   4   4 |  2  2  2   6 |  1  3  2
----------------------+----+---------+--------------+---------
  .. .. x. ..       & |  2 | 120   * |  1  1  0   1 |  1  1  1
  oo3oo3oo3oo  &#q    |  2 |   * 120 |  0  0  1   2 |  0  2  1
----------------------+----+---------+--------------+---------
  .. o.3x. ..       & |  3 |   3   0 | 40  *  *   * |  1  0  1  x-{3}
  .. .. x.3o.       & |  3 |   3   0 |  * 40  *   * |  1  1  0  x-{3}
((uo .. .. ou))&#zq   |  4 |   0   4 |  *  * 30   * |  0  2  0  q-{4}
  .. ox .. ..  &#q  & |  3 |   1   2 |  *  *  * 120 |  0  1  1  xqq
----------------------+----+---------+--------------+---------
  .. o.3x.3o.       &   6 |  12   0 |  4  4  0   0 | 10  *  *  red
((uo3ox .. ou))&#zq &   9 |   6  12 |  0  2  3   6 |  * 20  *  blue
  .. ox3xo ..  &#q      6 |   6   6 |  2  0  0   6 |  *  * 20  yellow : verf(spid)

© 2004-2026
top of page