Acronym triddip althiddip
Name triddip atop gyrated thiddip
Circumradius sqrt(17/12) = 1.190238
Face vector 27, 90, 114, 63, 14
Confer
general polytopal classes:
segmentotera   lace simplices  

Incidence matrix according to Dynkin symbol

ox3xo ox3xx&#x   → height = 1/sqrt(3) = 0.577350
(triddip || gyrated thiddip)

o.3o. o.3o.    | 9  * | 2 2  4  0 0 0 | 1 4 1  2  4  2  4 0 0 0 0 | 2 2 2 1 2 2 4 2 0 0 0 | 1 1 2 1 2 0
.o3.o .o3.o    | * 18 | 0 0  2  2 1 1 | 0 0 0  2  1  2  2 1 2 2 1 | 0 0 1 2 2 1 1 2 1 1 2 | 0 1 1 2 1 1
---------------+------+---------------+---------------------------+-----------------------+------------
.. x. .. ..    | 2  0 | 9 *  *  * * * | 1 2 0  0  2  0  0 0 0 0 0 | 2 1 2 0 0 1 2 0 0 0 0 | 1 1 2 0 1 0
.. .. .. x.    | 2  0 | * 9  *  * * * | 0 2 1  0  0  0  2 0 0 0 0 | 1 2 0 0 1 0 2 2 0 0 0 | 1 0 1 1 2 0
oo3oo oo3oo&#x | 1  1 | * * 36  * * * | 0 0 0  1  1  1  1 0 0 0 0 | 0 0 1 1 1 1 1 1 0 0 0 | 0 1 1 1 1 0
.x .. .. ..    | 0  2 | * *  * 18 * * | 0 0 0  1  0  0  0 1 1 1 0 | 0 0 1 1 1 0 0 0 1 1 1 | 0 1 1 1 0 1
.. .. .x ..    | 0  2 | * *  *  * 9 * | 0 0 0  0  0  2  0 0 2 0 1 | 0 0 0 2 0 1 0 2 1 0 2 | 0 1 0 2 1 1
.. .. .. .x    | 0  2 | * *  *  * * 9 | 0 0 0  0  0  0  2 0 0 2 1 | 0 0 0 0 2 0 1 2 0 1 2 | 0 0 1 2 1 1
---------------+------+---------------+---------------------------+-----------------------+------------
o.3x. .. ..    | 3  0 | 3 0  0  0 0 0 | 3 * *  *  *  *  * * * * * | 2 0 2 0 0 0 0 0 0 0 0 | 1 1 2 0 0 0
.. x. .. x.    | 4  0 | 2 2  0  0 0 0 | * 9 *  *  *  *  * * * * * | 1 1 0 0 0 0 1 0 0 0 0 | 1 0 1 0 1 0
.. .. o.3x.    | 3  0 | 0 3  0  0 0 0 | * * 3  *  *  *  * * * * * | 0 2 0 0 0 0 0 2 0 0 0 | 1 0 0 1 2 0
ox .. .. ..&#x | 1  2 | 0 0  2  1 0 0 | * * * 18  *  *  * * * * * | 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0
.. xo .. ..&#x | 2  1 | 1 0  2  0 0 0 | * * *  * 18  *  * * * * * | 0 0 1 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0
.. .. ox ..&#x | 1  2 | 0 0  2  0 1 0 | * * *  *  * 18  * * * * * | 0 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 1 0
.. .. .. xx&#x | 2  2 | 0 1  2  0 0 1 | * * *  *  *  * 18 * * * * | 0 0 0 0 1 0 1 1 0 0 0 | 0 0 1 1 1 0
.x3.o .. ..    | 0  3 | 0 0  0  3 0 0 | * * *  *  *  *  * 6 * * * | 0 0 1 0 0 0 0 0 1 1 0 | 0 1 1 0 0 1
.x .. .x ..    | 0  4 | 0 0  0  2 2 0 | * * *  *  *  *  * * 9 * * | 0 0 0 1 0 0 0 0 1 0 1 | 0 1 0 1 0 1
.x .. .. .x    | 0  4 | 0 0  0  2 0 2 | * * *  *  *  *  * * * 9 * | 0 0 0 0 1 0 0 0 0 1 1 | 0 0 1 1 0 1
.. .. .x3.x    | 0  6 | 0 0  0  0 3 3 | * * *  *  *  *  * * * * 3 | 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 2 1 1
---------------+------+---------------+---------------------------+-----------------------+------------
o.3x. .. x.     6  0 | 6 3  0  0 0 0 | 2 3 0  0  0  0  0 0 0 0 0 | 3 * * * * * * * * * * | 1 0 1 0 0 0
.. x. o.3x.     6  0 | 3 6  0  0 0 0 | 0 3 2  0  0  0  0 0 0 0 0 | * 3 * * * * * * * * * | 1 0 0 0 1 0
ox3xo .. ..&#x  3  3 | 3 0  6  3 0 0 | 1 0 0  3  3  0  0 1 0 0 0 | * * 6 * * * * * * * * | 0 1 1 0 0 0
ox .. ox ..&#x  1  4 | 0 0  4  2 2 0 | 0 0 0  2  0  2  0 0 1 0 0 | * * * 9 * * * * * * * | 0 1 0 1 0 0
ox .. .. xx&#x  2  4 | 0 1  4  2 0 2 | 0 0 0  2  0  0  2 0 0 1 0 | * * * * 9 * * * * * * | 0 0 1 1 0 0
.. xo ox ..&#x  2  2 | 1 0  4  0 1 0 | 0 0 0  0  2  2  0 0 0 0 0 | * * * * * 9 * * * * * | 0 1 0 0 1 0
.. xo .. xx&#x  4  2 | 2 2  4  0 0 1 | 0 1 0  0  2  0  2 0 0 0 0 | * * * * * * 9 * * * * | 0 0 1 0 1 0
.. .. ox3xx&#x  3  6 | 0 3  6  0 3 3 | 0 0 1  0  0  3  3 0 0 0 1 | * * * * * * * 6 * * * | 0 0 0 1 1 0
.x3.o .x ..     0  6 | 0 0  0  6 3 0 | 0 0 0  0  0  0  0 2 3 0 0 | * * * * * * * * 3 * * | 0 1 0 0 0 1
.x3.o .. .x     0  6 | 0 0  0  6 0 3 | 0 0 0  0  0  0  0 2 0 3 0 | * * * * * * * * * 3 * | 0 0 1 0 0 1
.x .. .x3.x     0 12 | 0 0  0  6 6 6 | 0 0 0  0  0  0  0 0 3 3 2 | * * * * * * * * * * 3 | 0 0 0 1 0 1
---------------+------+---------------+---------------------------+-----------------------+------------
o.3x. o.3x.     9  0 | 9 9  0  0 0 0 | 3 9 3  0  0  0  0 0 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 | 1 * * * * *
ox3xo ox ..&#x  3  6 | 3 0 12  6 3 0 | 1 0 0  6  6  6  0 2 3 0 0 | 0 0 2 3 0 3 0 0 1 0 0 | * 3 * * * *
ox3xo .. xx&#x  6  6 | 6 3 12  6 0 3 | 2 3 0  6  6  0  6 2 0 3 0 | 1 0 2 0 3 0 3 0 0 1 0 | * * 3 * * *
ox .. ox3xx&#x  3 12 | 0 3 12  6 6 6 | 0 0 1  6  0  6  6 0 3 3 2 | 0 0 0 3 3 0 0 2 0 0 1 | * * * 3 * *
.. xo ox3xx&#x  6  6 | 3 6 12  0 3 3 | 0 3 2  0  6  6  6 0 0 0 1 | 0 1 0 0 0 3 3 2 0 0 0 | * * * * 3 *
.x3.o .x3.x     0 18 | 0 0  0 18 9 9 | 0 0 0  0  0  0  0 6 9 9 3 | 0 0 0 0 0 0 0 0 3 3 3 | * * * * * 1

© 2004-2024
top of page