Acronym triddipabl tratrip
Name triddip atop bidual tratrip
Circumradius 1
Face vector 27, 135, 243, 201, 81, 15
Confer
general polytopal classes:
lace simplices  

Incidence matrix according to Dynkin symbol

xo3ox xo3ox ox&#x   → height = 1/sqrt(12) = 0.288675

o.3o. o.3o. o.      | 9  * |  4  8  0 0 | 2 4 16  8  4  0  0  0 | 4  8  8  8  8  2  4  0 0 0 | 1  8  4  4 4  4 1 0 0 | 2 4 2 0
.o3.o .o3.o .o      | * 18 |  0  4  4 1 | 0 0  4  8  4  2  4  4 | 0  4  1  4  4  4  8  4 2 4 | 0  2  4  4 1  4 4 1 4 | 1 2 4 1
--------------------+------+------------+-----------------------+----------------------------+-----------------------+--------
x. .. .. .. ..    & | 2  0 | 18  *  * * | 1 2  4  0  0  0  0  0 | 3  4  4  2  2  0  0  0 0 0 | 1  6  2  2 2  1 0 0 0 | 2 3 1 0
oo3oo oo3oo oo&#x   | 1  1 |  * 72  * * | 0 0  2  2  1  0  0  0 | 0  2  1  2  2  1  2  0 0 0 | 0  2  2  2 1  2 1 0 0 | 1 2 2 0
.. .x .. .. ..    & | 0  2 |  *  * 36 * | 0 0  0  2  0  1  2  1 | 0  2  0  1  0  2  2  3 1 2 | 0  1  3  2 0  1 2 1 3 | 1 1 3 1
.. .. .. .. .x      | 0  2 |  *  *  * 9 | 0 0  0  0  4  0  0  4 | 0  0  0  0  4  0  8  0 2 4 | 0  0  0  4 1  4 4 0 4 | 0 2 4 1
--------------------+------+------------+-----------------------+----------------------------+-----------------------+--------
x.3o. .. .. ..    & | 3  0 |  3  0  0 0 | 6 *  *  *  *  *  *  * | 2  4  0  0  0  0  0  0 0 0 | 1  4  2  2 0  0 0 0 0 | 2 2 1 0
x. .. x. .. ..      | 4  0 |  4  0  0 0 | * 9  *  *  *  *  *  * | 2  0  2  0  0  0  0  0 0 0 | 1  4  0  0 1  0 0 0 0 | 2 2 0 0
xo .. .. .. ..&#x & | 2  1 |  1  2  0 0 | * * 72  *  *  *  *  * | 0  1  1  1  1  0  0  0 0 0 | 0  2  1  1 1  1 0 0 0 | 1 2 1 0
.. ox .. .. ..&#x & | 1  2 |  0  2  1 0 | * *  * 72  *  *  *  * | 0  1  0  1  0  1  1  0 0 0 | 0  1  2  1 0  1 1 0 0 | 1 1 2 0
.. .. .. .. ox&#x & | 1  2 |  0  2  0 1 | * *  *  * 36  *  *  * | 0  0  0  0  2  0  2  0 0 0 | 0  0  0  2 1  2 1 0 0 | 0 2 2 0
.o3.x .. .. ..    & | 0  3 |  0  0  3 0 | * *  *  *  * 12  *  * | 0  2  0  0  0  0  0  2 1 0 | 0  1  2  2 0  0 0 1 2 | 1 1 2 1
.. .x .. .x ..      | 0  4 |  0  0  4 0 | * *  *  *  *  * 18  * | 0  0  0  0  0  1  0  2 0 1 | 0  0  2  0 0  0 1 1 2 | 1 0 2 1
.. .x .. .. .x    & | 0  4 |  0  0  2 2 | * *  *  *  *  *  * 18 | 0  0  0  0  0  0  2  0 1 2 | 0  0  0  2 0  1 2 0 3 | 0 1 3 1
--------------------+------+------------+-----------------------+----------------------------+-----------------------+--------
x.3o. x. .. ..    &  6  0 |  9  0  0 0 | 2 3  0  0  0  0  0  0 | 6  *  *  *  *  *  *  * * * | 1  2  0  0 0  0 0 0 0 | 2 1 0 0
xo3ox .. .. ..&#x &  3  3 |  3  6  3 0 | 1 0  3  3  0  1  0  0 | * 24  *  *  *  *  *  * * * | 0  1  1  1 0  0 0 0 0 | 1 1 1 0
xo .. xo .. ..&#x    4  1 |  4  4  0 0 | 0 1  4  0  0  0  0  0 | *  * 18  *  *  *  *  * * * | 0  2  0  0 1  0 0 0 0 | 1 2 0 0
xo .. .. ox ..&#x &  2  2 |  1  4  1 0 | 0 0  2  2  0  0  0  0 | *  *  * 36  *  *  *  * * * | 0  1  1  0 0  1 0 0 0 | 1 1 1 0
xo .. .. .. ox&#x &  2  2 |  1  4  0 1 | 0 0  2  0  2  0  0  0 | *  *  *  * 36  *  *  * * * | 0  0  0  1 1  1 0 0 0 | 0 2 1 0
.. ox .. ox ..&#x    1  4 |  0  4  4 0 | 0 0  0  4  0  0  1  0 | *  *  *  *  * 18  *  * * * | 0  0  2  0 0  0 1 0 0 | 1 0 2 0
.. ox .. .. ox&#x &  1  4 |  0  4  2 2 | 0 0  0  2  2  0  0  1 | *  *  *  *  *  * 36  * * * | 0  0  0  1 0  1 1 0 0 | 0 1 2 0
.o3.x .. .x ..    &  0  6 |  0  0  9 0 | 0 0  0  0  0  2  3  0 | *  *  *  *  *  *  * 12 * * | 0  0  1  0 0  0 0 1 1 | 1 0 1 1
.o3.x .. .. .x    &  0  6 |  0  0  6 3 | 0 0  0  0  0  2  0  3 | *  *  *  *  *  *  *  * 6 * | 0  0  0  2 0  0 0 0 2 | 0 1 2 1
.. .x .. .x .x       0  8 |  0  0  8 4 | 0 0  0  0  0  0  2  4 | *  *  *  *  *  *  *  * * 9 | 0  0  0  0 0  0 1 0 2 | 0 0 2 1
--------------------+------+------------+-----------------------+----------------------------+-----------------------+--------
x.3o. x.3o. ..       9  0 | 18  0  0 0 | 6 9  0  0  0  0  0  0 | 6  0  0  0  0  0  0  0 0 0 | 1  *  *  * *  * * * * | 2 0 0 0
xo3ox xo .. ..&#x &  6  3 |  9 12  3 0 | 2 3 12  6  0  1  0  0 | 1  2  3  3  0  0  0  0 0 0 | * 12  *  * *  * * * * | 1 1 0 0
xo3ox .. ox ..&#x &  3  6 |  3 12  9 0 | 1 0  6 12  0  2  3  0 | 0  2  0  3  0  3  0  1 0 0 | *  * 12  * *  * * * * | 1 0 1 0
xo3ox .. .. ox&#x &  3  6 |  3 12  6 3 | 1 0  6  6  6  2  0  3 | 0  2  0  0  3  0  3  0 1 0 | *  *  * 12 *  * * * * | 0 1 1 0
xo .. xo .. ox&#x    4  2 |  4  8  0 1 | 0 1  8  0  4  0  0  0 | 0  0  2  0  4  0  0  0 0 0 | *  *  *  * 9  * * * * | 0 2 0 0
xo .. .. ox ox&#x &  2  4 |  1  8  2 2 | 0 0  4  4  4  0  0  1 | 0  0  0  2  2  0  2  0 0 0 | *  *  *  * * 18 * * * | 0 1 1 0
.. ox .. ox ox&#x    1  8 |  0  8  8 4 | 0 0  0  8  4  0  2  4 | 0  0  0  0  0  2  4  0 0 1 | *  *  *  * *  * 9 * * | 0 0 2 0
.o3.x .o3.x ..       0  9 |  0  0 18 0 | 0 0  0  0  0  6  9  0 | 0  0  0  0  0  0  0  6 0 0 | *  *  *  * *  * * 2 * | 1 0 0 1
.o3.x .. .x .x    &  0 12 |  0  0 18 6 | 0 0  0  0  0  4  6  9 | 0  0  0  0  0  0  0  2 2 3 | *  *  *  * *  * * * 6 | 0 0 1 1
--------------------+------+------------+-----------------------+----------------------------+-----------------------+--------
xo3ox xo3ox ..&#x    9  9 | 18 36 18 0 | 6 9 36 36  0  6  9  0 | 6 12  9 18  0  9  0  6 0 0 | 1  6  6  0 0  0 0 1 0 | 2 * * *
xo3ox xo .. ox&#x &  6  6 |  9 24  6 3 | 2 3 24 12 12  2  0  3 | 1  4  6  6 12  0  6  0 1 0 | 0  2  0  2 3  3 0 0 0 | * 6 * *
xo3ox .. ox ox&#x &  3 12 |  3 24 18 6 | 1 0 12 24 12  4  6  9 | 0  4  0  6  6  6 12  2 2 3 | 0  0  2  2 0  3 3 0 1 | * * 6 *
.o3.x .o3.x .x       0 18 |  0  0 36 9 | 0 0  0  0  0 12 18 18 | 0  0  0  0  0  0  0 12 6 9 | 0  0  0  0 0  0 0 2 6 | * * * 1

© 2004-2025
top of page