Acronym | triddipabl tratrip |
Name | triddip atop bidual tratrip |
Circumradius | 1 |
Face vector | 27, 135, 243, 201, 81, 15 |
Confer |
|
Incidence matrix according to Dynkin symbol
xo3ox xo3ox ox&#x → height = 1/sqrt(12) = 0.288675 o.3o. o.3o. o. | 9 * | 4 8 0 0 | 2 4 16 8 4 0 0 0 | 4 8 8 8 8 2 4 0 0 0 | 1 8 4 4 4 4 1 0 0 | 2 4 2 0 .o3.o .o3.o .o | * 18 | 0 4 4 1 | 0 0 4 8 4 2 4 4 | 0 4 1 4 4 4 8 4 2 4 | 0 2 4 4 1 4 4 1 4 | 1 2 4 1 --------------------+------+------------+-----------------------+----------------------------+-----------------------+-------- x. .. .. .. .. & | 2 0 | 18 * * * | 1 2 4 0 0 0 0 0 | 3 4 4 2 2 0 0 0 0 0 | 1 6 2 2 2 1 0 0 0 | 2 3 1 0 oo3oo oo3oo oo&#x | 1 1 | * 72 * * | 0 0 2 2 1 0 0 0 | 0 2 1 2 2 1 2 0 0 0 | 0 2 2 2 1 2 1 0 0 | 1 2 2 0 .. .x .. .. .. & | 0 2 | * * 36 * | 0 0 0 2 0 1 2 1 | 0 2 0 1 0 2 2 3 1 2 | 0 1 3 2 0 1 2 1 3 | 1 1 3 1 .. .. .. .. .x | 0 2 | * * * 9 | 0 0 0 0 4 0 0 4 | 0 0 0 0 4 0 8 0 2 4 | 0 0 0 4 1 4 4 0 4 | 0 2 4 1 --------------------+------+------------+-----------------------+----------------------------+-----------------------+-------- x.3o. .. .. .. & | 3 0 | 3 0 0 0 | 6 * * * * * * * | 2 4 0 0 0 0 0 0 0 0 | 1 4 2 2 0 0 0 0 0 | 2 2 1 0 x. .. x. .. .. | 4 0 | 4 0 0 0 | * 9 * * * * * * | 2 0 2 0 0 0 0 0 0 0 | 1 4 0 0 1 0 0 0 0 | 2 2 0 0 xo .. .. .. ..&#x & | 2 1 | 1 2 0 0 | * * 72 * * * * * | 0 1 1 1 1 0 0 0 0 0 | 0 2 1 1 1 1 0 0 0 | 1 2 1 0 .. ox .. .. ..&#x & | 1 2 | 0 2 1 0 | * * * 72 * * * * | 0 1 0 1 0 1 1 0 0 0 | 0 1 2 1 0 1 1 0 0 | 1 1 2 0 .. .. .. .. ox&#x & | 1 2 | 0 2 0 1 | * * * * 36 * * * | 0 0 0 0 2 0 2 0 0 0 | 0 0 0 2 1 2 1 0 0 | 0 2 2 0 .o3.x .. .. .. & | 0 3 | 0 0 3 0 | * * * * * 12 * * | 0 2 0 0 0 0 0 2 1 0 | 0 1 2 2 0 0 0 1 2 | 1 1 2 1 .. .x .. .x .. | 0 4 | 0 0 4 0 | * * * * * * 18 * | 0 0 0 0 0 1 0 2 0 1 | 0 0 2 0 0 0 1 1 2 | 1 0 2 1 .. .x .. .. .x & | 0 4 | 0 0 2 2 | * * * * * * * 18 | 0 0 0 0 0 0 2 0 1 2 | 0 0 0 2 0 1 2 0 3 | 0 1 3 1 --------------------+------+------------+-----------------------+----------------------------+-----------------------+-------- x.3o. x. .. .. & ♦ 6 0 | 9 0 0 0 | 2 3 0 0 0 0 0 0 | 6 * * * * * * * * * | 1 2 0 0 0 0 0 0 0 | 2 1 0 0 xo3ox .. .. ..&#x & ♦ 3 3 | 3 6 3 0 | 1 0 3 3 0 1 0 0 | * 24 * * * * * * * * | 0 1 1 1 0 0 0 0 0 | 1 1 1 0 xo .. xo .. ..&#x ♦ 4 1 | 4 4 0 0 | 0 1 4 0 0 0 0 0 | * * 18 * * * * * * * | 0 2 0 0 1 0 0 0 0 | 1 2 0 0 xo .. .. ox ..&#x & ♦ 2 2 | 1 4 1 0 | 0 0 2 2 0 0 0 0 | * * * 36 * * * * * * | 0 1 1 0 0 1 0 0 0 | 1 1 1 0 xo .. .. .. ox&#x & ♦ 2 2 | 1 4 0 1 | 0 0 2 0 2 0 0 0 | * * * * 36 * * * * * | 0 0 0 1 1 1 0 0 0 | 0 2 1 0 .. ox .. ox ..&#x ♦ 1 4 | 0 4 4 0 | 0 0 0 4 0 0 1 0 | * * * * * 18 * * * * | 0 0 2 0 0 0 1 0 0 | 1 0 2 0 .. ox .. .. ox&#x & ♦ 1 4 | 0 4 2 2 | 0 0 0 2 2 0 0 1 | * * * * * * 36 * * * | 0 0 0 1 0 1 1 0 0 | 0 1 2 0 .o3.x .. .x .. & ♦ 0 6 | 0 0 9 0 | 0 0 0 0 0 2 3 0 | * * * * * * * 12 * * | 0 0 1 0 0 0 0 1 1 | 1 0 1 1 .o3.x .. .. .x & ♦ 0 6 | 0 0 6 3 | 0 0 0 0 0 2 0 3 | * * * * * * * * 6 * | 0 0 0 2 0 0 0 0 2 | 0 1 2 1 .. .x .. .x .x ♦ 0 8 | 0 0 8 4 | 0 0 0 0 0 0 2 4 | * * * * * * * * * 9 | 0 0 0 0 0 0 1 0 2 | 0 0 2 1 --------------------+------+------------+-----------------------+----------------------------+-----------------------+-------- x.3o. x.3o. .. ♦ 9 0 | 18 0 0 0 | 6 9 0 0 0 0 0 0 | 6 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * | 2 0 0 0 xo3ox xo .. ..&#x & ♦ 6 3 | 9 12 3 0 | 2 3 12 6 0 1 0 0 | 1 2 3 3 0 0 0 0 0 0 | * 12 * * * * * * * | 1 1 0 0 xo3ox .. ox ..&#x & ♦ 3 6 | 3 12 9 0 | 1 0 6 12 0 2 3 0 | 0 2 0 3 0 3 0 1 0 0 | * * 12 * * * * * * | 1 0 1 0 xo3ox .. .. ox&#x & ♦ 3 6 | 3 12 6 3 | 1 0 6 6 6 2 0 3 | 0 2 0 0 3 0 3 0 1 0 | * * * 12 * * * * * | 0 1 1 0 xo .. xo .. ox&#x ♦ 4 2 | 4 8 0 1 | 0 1 8 0 4 0 0 0 | 0 0 2 0 4 0 0 0 0 0 | * * * * 9 * * * * | 0 2 0 0 xo .. .. ox ox&#x & ♦ 2 4 | 1 8 2 2 | 0 0 4 4 4 0 0 1 | 0 0 0 2 2 0 2 0 0 0 | * * * * * 18 * * * | 0 1 1 0 .. ox .. ox ox&#x ♦ 1 8 | 0 8 8 4 | 0 0 0 8 4 0 2 4 | 0 0 0 0 0 2 4 0 0 1 | * * * * * * 9 * * | 0 0 2 0 .o3.x .o3.x .. ♦ 0 9 | 0 0 18 0 | 0 0 0 0 0 6 9 0 | 0 0 0 0 0 0 0 6 0 0 | * * * * * * * 2 * | 1 0 0 1 .o3.x .. .x .x & ♦ 0 12 | 0 0 18 6 | 0 0 0 0 0 4 6 9 | 0 0 0 0 0 0 0 2 2 3 | * * * * * * * * 6 | 0 0 1 1 --------------------+------+------------+-----------------------+----------------------------+-----------------------+-------- xo3ox xo3ox ..&#x ♦ 9 9 | 18 36 18 0 | 6 9 36 36 0 6 9 0 | 6 12 9 18 0 9 0 6 0 0 | 1 6 6 0 0 0 0 1 0 | 2 * * * xo3ox xo .. ox&#x & ♦ 6 6 | 9 24 6 3 | 2 3 24 12 12 2 0 3 | 1 4 6 6 12 0 6 0 1 0 | 0 2 0 2 3 3 0 0 0 | * 6 * * xo3ox .. ox ox&#x & ♦ 3 12 | 3 24 18 6 | 1 0 12 24 12 4 6 9 | 0 4 0 6 6 6 12 2 2 3 | 0 0 2 2 0 3 3 0 1 | * * 6 * .o3.x .o3.x .x ♦ 0 18 | 0 0 36 9 | 0 0 0 0 0 12 18 18 | 0 0 0 0 0 0 0 12 6 9 | 0 0 0 0 0 0 0 2 6 | * * * 1
© 2004-2024 | top of page |