| Acronym | trarixdit |
| Name |
(triangle,rix)-duotegum, tegum product of triangle and rectified hexateron |
| Face vector | 18, 108, 305, 465, 387, 171, 36 |
Due to the matching circumradii of the tegum product factors the lacing edges of this polyexon are of unit size too. Accordingly it qualifies as an 7D CRF.
Incidence matrix according to Dynkin symbol
xo3oo oo3ox3oo3oo3oo&#zx → height = 0
(tegum product of {3} and rix)
o.3o. o.3o.3o.3o.3o. | 3 * | 2 15 0 | 30 60 0 0 | 120 20 60 0 0 | 40 120 15 30 0 0 | 30 60 6 6 | 12 12
.o3.o .o3.o3.o3.o3.o | * 15 | 0 3 8 | 3 24 4 12 | 24 12 36 6 8 | 12 36 18 24 4 2 | 18 24 12 6 | 12 6
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
x. .. .. .. .. .. .. | 2 0 | 3 * * ♦ 15 0 0 0 | 60 0 0 0 0 | 20 60 0 0 0 0 | 15 30 0 0 | 6 6
oo3oo oo3oo3oo3oo3oo&#x | 1 1 | * 45 * | 2 8 0 0 | 16 4 12 0 0 | 8 24 6 8 0 0 | 12 16 4 2 | 8 4
.. .. .. .x .. .. .. | 0 2 | * * 60 | 0 3 1 3 | 3 3 9 3 3 | 3 9 9 9 3 3 | 9 9 9 3 | 9 3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. .. .. .. .. ..&#x | 2 1 | 1 2 0 | 45 * * * ♦ 8 0 0 0 0 | 4 12 0 0 0 0 | 6 8 0 0 | 4 2
.. .. .. ox .. .. ..&#x | 1 2 | 0 2 1 | * 180 * * | 2 1 3 0 0 | 2 6 3 3 0 0 | 6 6 3 1 | 6 2
.. .. .o3.x .. .. .. | 0 3 | 0 0 3 | * * 20 * | 0 3 0 3 0 | 3 0 9 0 3 0 | 9 0 9 0 | 9 0
.. .. .. .x3.o .. .. | 0 3 | 0 0 3 | * * * 60 | 0 0 3 1 2 | 0 3 3 6 2 1 | 3 6 6 3 | 6 3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. .. ox .. .. ..&#x ♦ 2 2 | 1 4 1 | 2 2 0 0 | 180 * * * * | 1 3 0 0 0 0 | 3 3 0 0 | 3 1
.. .. oo3ox .. .. ..&#x ♦ 1 3 | 0 3 3 | 0 3 1 0 | * 60 * * * | 2 0 3 0 0 0 | 6 0 3 0 | 6 0
.. .. .. ox3oo .. ..&#x ♦ 1 3 | 0 3 3 | 0 3 0 1 | * * 180 * * | 0 2 1 2 0 0 | 2 4 2 1 | 4 2
.. .. .o3.x3.o .. .. ♦ 0 6 | 0 0 12 | 0 0 4 4 | * * * 15 * | 0 0 3 0 2 0 | 3 0 6 0 | 6 0
.. .. .. .x3.o3.o .. ♦ 0 4 | 0 0 6 | 0 0 0 4 | * * * * 30 | 0 0 0 3 1 1 | 0 3 3 3 | 3 3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox .. .. ..&#x ♦ 2 3 | 1 6 3 | 3 6 1 0 | 3 2 0 0 0 | 60 * * * * * | 3 0 0 0 | 3 0
xo .. .. ox3oo .. ..&#x ♦ 2 3 | 1 6 3 | 3 6 0 1 | 3 0 2 0 0 | * 180 * * * * | 1 2 0 0 | 2 1
.. .. oo3ox3oo .. ..&#x ♦ 1 6 | 0 6 12 | 0 12 4 4 | 0 4 4 1 0 | * * 45 * * * | 2 0 2 0 | 4 0
.. .. .. ox3oo3oo ..&#x ♦ 1 4 | 0 4 6 | 0 6 0 4 | 0 0 4 0 1 | * * * 90 * * | 0 2 1 1 | 2 2
.. .. .o3.x3.o3.o .. ♦ 0 10 | 0 0 30 | 0 0 10 20 | 0 0 0 5 5 | * * * * 6 * | 0 0 3 0 | 3 0
.. .. .. .x3.o3.o3.o ♦ 0 5 | 0 0 10 | 0 0 0 10 | 0 0 0 0 5 | * * * * * 6 | 0 0 0 3 | 0 3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox3oo .. ..&#x ♦ 2 6 | 1 12 12 | 6 24 4 4 | 12 8 8 1 0 | 4 4 2 0 0 0 | 45 * * * | 2 0
xo .. .. ox3oo3oo ..&#x ♦ 2 4 | 1 8 6 | 4 12 0 4 | 6 0 8 0 1 | 0 4 0 2 0 0 | * 90 * * | 1 1
.. .. oo3ox3oo3oo ..&#x ♦ 1 10 | 0 10 30 | 0 30 10 20 | 0 10 20 5 5 | 0 0 5 5 1 0 | * * 18 * | 2 0
.. .. .. ox3oo3oo3oo&#x ♦ 1 5 | 0 5 10 | 0 10 0 10 | 0 0 10 0 5 | 0 0 0 5 0 1 | * * * 18 | 0 2
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox3oo3oo ..&#x ♦ 2 10 | 1 20 30 | 10 60 10 20 | 30 20 40 5 5 | 10 20 10 10 1 0 | 5 5 2 0 | 18 *
xo .. .. ox3oo3oo3oo&#x ♦ 2 5 | 1 10 10 | 5 20 0 10 | 10 0 20 0 5 | 0 10 0 10 0 1 | 0 5 0 2 | * 18
© 2004-2025 | top of page |