Acronym trarixdit
Name (triangle,rix)-duotegum,
tegum product of triangle and rectified hexateron
Face vector 18, 108, 305, 465, 387, 171, 36

Due to the matching circumradii of the tegum product factors the lacing edges of this polyexon are of unit size too. Accordingly it qualifies as an 7D CRF.


Incidence matrix according to Dynkin symbol

xo3oo oo3ox3oo3oo3oo&#zx   → height = 0
(tegum product of {3} and rix)

o.3o. o.3o.3o.3o.3o.     | 3  * | 2 15  0 | 30  60  0  0 | 120 20  60  0  0 | 40 120 15 30 0 0 | 30 60  6  6 | 12 12
.o3.o .o3.o3.o3.o3.o     | * 15 | 0  3  8 |  3  24  4 12 |  24 12  36  6  8 | 12  36 18 24 4 2 | 18 24 12  6 | 12  6
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
x. .. .. .. .. .. ..     | 2  0 | 3  *  *  15   0  0  0 |  60  0   0  0  0 | 20  60  0  0 0 0 | 15 30  0  0 |  6  6
oo3oo oo3oo3oo3oo3oo&#x  | 1  1 | * 45  * |  2   8  0  0 |  16  4  12  0  0 |  8  24  6  8 0 0 | 12 16  4  2 |  8  4
.. .. .. .x .. .. ..     | 0  2 | *  * 60 |  0   3  1  3 |   3  3   9  3  3 |  3   9  9  9 3 3 |  9  9  9  3 |  9  3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. .. .. .. .. ..&#x  | 2  1 | 1  2  0 | 45   *  *  *    8  0   0  0  0 |  4  12  0  0 0 0 |  6  8  0  0 |  4  2
.. .. .. ox .. .. ..&#x  | 1  2 | 0  2  1 |  * 180  *  * |   2  1   3  0  0 |  2   6  3  3 0 0 |  6  6  3  1 |  6  2
.. .. .o3.x .. .. ..     | 0  3 | 0  0  3 |  *   * 20  * |   0  3   0  3  0 |  3   0  9  0 3 0 |  9  0  9  0 |  9  0
.. .. .. .x3.o .. ..     | 0  3 | 0  0  3 |  *   *  * 60 |   0  0   3  1  2 |  0   3  3  6 2 1 |  3  6  6  3 |  6  3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. .. ox .. .. ..&#x   2  2 | 1  4  1 |  2   2  0  0 | 180  *   *  *  * |  1   3  0  0 0 0 |  3  3  0  0 |  3  1
.. .. oo3ox .. .. ..&#x   1  3 | 0  3  3 |  0   3  1  0 |   * 60   *  *  * |  2   0  3  0 0 0 |  6  0  3  0 |  6  0
.. .. .. ox3oo .. ..&#x   1  3 | 0  3  3 |  0   3  0  1 |   *  * 180  *  * |  0   2  1  2 0 0 |  2  4  2  1 |  4  2
.. .. .o3.x3.o .. ..      0  6 | 0  0 12 |  0   0  4  4 |   *  *   * 15  * |  0   0  3  0 2 0 |  3  0  6  0 |  6  0
.. .. .. .x3.o3.o ..      0  4 | 0  0  6 |  0   0  0  4 |   *  *   *  * 30 |  0   0  0  3 1 1 |  0  3  3  3 |  3  3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox .. .. ..&#x   2  3 | 1  6  3 |  3   6  1  0 |   3  2   0  0  0 | 60   *  *  * * * |  3  0  0  0 |  3  0
xo .. .. ox3oo .. ..&#x   2  3 | 1  6  3 |  3   6  0  1 |   3  0   2  0  0 |  * 180  *  * * * |  1  2  0  0 |  2  1
.. .. oo3ox3oo .. ..&#x   1  6 | 0  6 12 |  0  12  4  4 |   0  4   4  1  0 |  *   * 45  * * * |  2  0  2  0 |  4  0
.. .. .. ox3oo3oo ..&#x   1  4 | 0  4  6 |  0   6  0  4 |   0  0   4  0  1 |  *   *  * 90 * * |  0  2  1  1 |  2  2
.. .. .o3.x3.o3.o ..      0 10 | 0  0 30 |  0   0 10 20 |   0  0   0  5  5 |  *   *  *  * 6 * |  0  0  3  0 |  3  0
.. .. .. .x3.o3.o3.o      0  5 | 0  0 10 |  0   0  0 10 |   0  0   0  0  5 |  *   *  *  * * 6 |  0  0  0  3 |  0  3
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox3oo .. ..&#x   2  6 | 1 12 12 |  6  24  4  4 |  12  8   8  1  0 |  4   4  2  0 0 0 | 45  *  *  * |  2  0
xo .. .. ox3oo3oo ..&#x   2  4 | 1  8  6 |  4  12  0  4 |   6  0   8  0  1 |  0   4  0  2 0 0 |  * 90  *  * |  1  1
.. .. oo3ox3oo3oo ..&#x   1 10 | 0 10 30 |  0  30 10 20 |   0 10  20  5  5 |  0   0  5  5 1 0 |  *  * 18  * |  2  0
.. .. .. ox3oo3oo3oo&#x   1  5 | 0  5 10 |  0  10  0 10 |   0  0  10  0  5 |  0   0  0  5 0 1 |  *  *  * 18 |  0  2
-------------------------+------+---------+--------------+------------------+------------------+-------------+------
xo .. oo3ox3oo3oo ..&#x   2 10 | 1 20 30 | 10  60 10 20 |  30 20  40  5  5 | 10  20 10 10 1 0 |  5  5  2  0 | 18  *
xo .. .. ox3oo3oo3oo&#x   2  5 | 1 10 10 |  5  20  0 10 |  10  0  20  0  5 |  0  10  0 10 0 1 |  0  5  0  2 |  * 18

© 2004-2024
top of page