Acronym tissidtixhi
Name truncated small ditrigonary hexacosihecatonicosachoron
Cross sections
` ©`
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: cube ditdid gidtid sidtid ti tiggy toe tut tidox (compound) 600 0 0 0 0 0 600 0 tidtidohi 0 120 0 0 120 120 0 0 tiggidtixhi 0 0 120 0 120 0 0 600 tissidtixhi 0 0 0 120 0 120 0 600
)
External

As abstract polytope tissidtixhi is isomorphic to tiggidtixhi, thereby replacing the pentagrams by pentagons, resp. replacing sidtid by gidtid and replacing tiggy by ti.

Incidence matrix according to Dynkin symbol

```x3x3o3o5/2*b

. . . .      | 2400 |    1    6 |    6    3    3 |   3   3   1
-------------+------+-----------+----------------+------------
x . . .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x . .      |    2 |    * 7200 |    1    1    1 |   1   1   1
-------------+------+-----------+----------------+------------
x3x . .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3o .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x . o5/2*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-------------+------+-----------+----------------+------------
x3x3o .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x . o5/2*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3o3o5/2*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3o3/2o5/3*b

. . .   .      | 2400 |    1    6 |    6    3    3 |   3   3   1
---------------+------+-----------+----------------+------------
x . .   .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x .   .      |    2 |    * 7200 |    1    1    1 |   1   1   1
---------------+------+-----------+----------------+------------
x3x .   .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3o   .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x .   o5/3*b |    5 |    0    5 |    *    * 1440 |   0   1   1
---------------+------+-----------+----------------+------------
x3x3o   .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x .   o5/3*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3o3/2o5/3*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3/2o3o5/3*b

. .   . .      | 2400 |    1    6 |    6    3    3 |   3   3   1
---------------+------+-----------+----------------+------------
x .   . .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x   . .      |    2 |    * 7200 |    1    1    1 |   1   1   1
---------------+------+-----------+----------------+------------
x3x   . .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3/2o .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x   . o5/3*b |    5 |    0    5 |    *    * 1440 |   0   1   1
---------------+------+-----------+----------------+------------
x3x3/2o .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x   . o5/3*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3/2o3o5/3*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3/2o3/2o5/2*b

. .   .   .      | 2400 |    1    6 |    6    3    3 |   3   3   1
-----------------+------+-----------+----------------+------------
x .   .   .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x   .   .      |    2 |    * 7200 |    1    1    1 |   1   1   1
-----------------+------+-----------+----------------+------------
x3x   .   .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3/2o   .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x   .   o5/2*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-----------------+------+-----------+----------------+------------
x3x3/2o   .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x   .   o5/2*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3/2o3/2o5/2*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```