Acronym | tetco |
Name | tetrahedron-cuboctahedron duoprism |
Circumradius | sqrt(11/8) = 1.172604 |
Volume | 5/18 = 0.277778 |
Face vector | 48, 168, 248, 196, 86, 18 |
Confer |
|
Incidence matrix according to Dynkin symbol
x3o3o o3x4o . . . . . . | 48 | 3 4 | 3 12 2 2 | 1 12 6 6 1 | 4 6 6 3 | 2 2 3 ------------+----+-------+--------------+---------------+------------+------ x . . . . . | 2 | 72 * | 2 4 0 0 | 1 8 2 2 0 | 4 4 4 1 | 2 2 2 . . . . x . | 2 | * 96 | 0 3 1 1 | 0 3 3 3 1 | 1 3 3 3 | 1 1 3 ------------+----+-------+--------------+---------------+------------+------ x3o . . . . | 3 | 3 0 | 48 * * * | 1 4 0 0 0 | 4 2 2 0 | 2 2 1 x . . . x . | 4 | 2 2 | * 144 * * | 0 2 1 1 0 | 1 2 2 1 | 1 1 2 . . . o3x . | 3 | 0 3 | * * 32 * | 0 0 3 0 1 | 0 3 0 3 | 1 0 3 . . . . x4o | 4 | 0 4 | * * * 24 | 0 0 0 3 1 | 0 0 3 3 | 0 1 3 ------------+----+-------+--------------+---------------+------------+------ x3o3o . . . ♦ 4 | 6 0 | 4 0 0 0 | 12 * * * * | 4 0 0 0 | 2 2 0 x3o . . x . ♦ 6 | 6 3 | 2 3 0 0 | * 96 * * * | 1 1 1 0 | 1 1 1 x . . o3x . ♦ 6 | 3 6 | 0 3 2 0 | * * 48 * * | 0 2 0 1 | 1 0 2 x . . . x4o ♦ 8 | 4 8 | 0 4 0 2 | * * * 36 * | 0 0 2 1 | 0 1 2 . . . o3x4o ♦ 12 | 0 24 | 0 0 8 6 | * * * * 4 | 0 0 0 3 | 0 0 3 ------------+----+-------+--------------+---------------+------------+------ x3o3o . x . ♦ 8 | 12 4 | 8 6 0 0 | 2 4 0 0 0 | 24 * * * | 1 1 0 x3o . o3x . ♦ 9 | 9 9 | 3 9 3 0 | 0 3 3 0 0 | * 32 * * | 1 0 1 x3o . . x4o ♦ 12 | 12 12 | 4 12 0 3 | 0 4 0 3 0 | * * 24 * | 0 1 1 x . . o3x4o ♦ 24 | 12 48 | 0 24 16 12 | 0 0 8 6 2 | * * * 6 | 0 0 2 ------------+----+-------+--------------+---------------+------------+------ x3o3o o3x . ♦ 12 | 18 12 | 12 18 4 0 | 3 12 6 0 0 | 3 4 0 0 | 8 * * x3o3o . x4o ♦ 16 | 24 16 | 16 24 0 4 | 4 16 0 6 0 | 4 0 4 0 | * 6 * x3o . o3x4o ♦ 36 | 36 72 | 12 72 24 18 | 0 24 24 18 3 | 0 8 6 3 | * * 4
x3o3o x3o3x . . . . . . | 48 | 3 2 2 | 3 6 6 1 2 1 | 1 6 6 3 6 3 1 | 2 2 3 6 3 3 | 1 2 1 3 ------------+----+----------+-------------------+---------------------+------------------+-------- x . . . . . | 2 | 72 * * | 2 2 2 0 0 0 | 1 4 4 1 2 1 0 | 2 2 2 4 2 1 | 1 2 1 2 . . . x . . | 2 | * 48 * | 0 3 0 1 1 0 | 0 3 0 3 3 0 1 | 1 0 3 3 0 3 | 1 1 0 3 . . . . . x | 2 | * * 48 | 0 0 3 0 1 1 | 0 0 3 0 3 3 1 | 0 1 0 3 3 3 | 0 1 1 3 ------------+----+----------+-------------------+---------------------+------------------+-------- x3o . . . . | 3 | 3 0 0 | 48 * * * * * | 1 2 2 0 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 x . . x . . | 4 | 2 2 0 | * 72 * * * * | 0 2 0 1 1 0 0 | 1 0 2 2 0 1 | 1 1 0 2 x . . . . x | 4 | 2 0 2 | * * 72 * * * | 0 0 2 0 1 1 0 | 0 1 0 2 2 1 | 0 1 1 2 . . . x3o . | 3 | 0 3 0 | * * * 16 * * | 0 0 0 3 0 0 1 | 0 0 3 0 0 3 | 1 0 0 3 . . . x . x | 4 | 0 2 2 | * * * * 24 * | 0 0 0 0 3 0 1 | 0 0 0 3 0 3 | 0 1 0 3 . . . . o3x | 3 | 0 0 3 | * * * * * 16 | 0 0 0 0 0 3 1 | 0 0 0 0 3 3 | 0 0 1 3 ------------+----+----------+-------------------+---------------------+------------------+-------- x3o3o . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 12 * * * * * * | 2 2 0 0 0 0 | 1 2 1 0 x3o . x . . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 48 * * * * * | 1 0 1 1 0 0 | 1 1 0 1 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 48 * * * * | 0 1 0 1 1 0 | 0 1 1 1 x . . x3o . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 24 * * * | 0 0 2 0 0 1 | 1 0 0 2 x . . x . x ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * * 36 * * | 0 0 0 2 0 1 | 0 1 0 2 x . . . o3x ♦ 6 | 3 0 6 | 0 0 3 0 0 2 | * * * * * 24 * | 0 0 0 0 2 1 | 0 0 1 2 . . . x3o3x ♦ 12 | 0 12 12 | 0 0 0 4 6 4 | * * * * * * 4 | 0 0 0 0 0 3 | 0 0 0 3 ------------+----+----------+-------------------+---------------------+------------------+-------- x3o3o x . . ♦ 8 | 12 4 0 | 8 6 0 0 0 0 | 2 4 0 0 0 0 0 | 12 * * * * * | 1 1 0 0 x3o3o . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 | * 12 * * * * | 0 1 1 0 x3o . x3o . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 0 3 0 3 0 0 0 | * * 16 * * * | 1 0 0 1 x3o . x . x ♦ 12 | 12 6 6 | 4 6 6 0 3 0 | 0 2 2 0 3 0 0 | * * * 24 * * | 0 1 0 1 x3o . . o3x ♦ 9 | 9 0 9 | 3 0 9 0 0 3 | 0 0 3 0 0 3 0 | * * * * 16 * | 0 0 1 1 x . . x3o3x ♦ 24 | 12 24 24 | 0 12 12 8 12 8 | 0 0 0 4 6 4 2 | * * * * * 6 | 0 0 0 2 ------------+----+----------+-------------------+---------------------+------------------+-------- x3o3o x3o . ♦ 12 | 18 12 0 | 12 18 0 4 0 0 | 3 12 0 6 0 0 0 | 3 0 4 0 0 0 | 4 * * * x3o3o x . x ♦ 16 | 24 8 8 | 16 12 12 0 4 0 | 4 8 8 0 6 0 0 | 2 2 0 4 0 0 | * 6 * * x3o3o . o3x ♦ 12 | 18 0 12 | 12 0 18 0 0 4 | 3 0 12 0 0 6 0 | 0 3 0 0 4 0 | * * 4 * x3o . x3o3x ♦ 36 | 36 36 36 | 12 36 36 12 18 12 | 0 12 12 12 18 12 3 | 0 0 4 6 4 3 | * * * 4
© 2004-2025 | top of page |