Acronym | ..., tat || prit |
Name | (degenerate) tat atop prit |
Circumradius | ∞ i.e. flat in euclidean space |
Face vector | 256, 992, 1224, 568, 82 |
Confer |
|
It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
ox3ox3xo4xx&#x → height = 0
(tat || prit)
o.3o.3o.4o. | 64 * | 3 1 6 0 0 0 | 3 3 3 3 6 6 0 0 0 0 0 | 1 3 1 3 3 3 3 6 0 0 0 0 | 1 1 1 3 3 0
.o3.o3.o4.o | * 192 | 0 0 2 1 2 2 | 0 0 2 2 1 2 2 2 1 2 1 | 0 0 2 1 2 1 2 1 1 2 1 1 | 0 1 2 1 1 1
---------------+--------+----------------------+--------------------------------------+-----------------------------------+---------------
.. .. x. .. | 2 0 | 96 * * * * * | 2 1 0 0 2 0 0 0 0 0 0 | 1 2 0 1 0 2 0 2 0 0 0 0 | 1 1 0 1 2 0
.. .. .. x. | 2 0 | * 32 * * * * | 0 3 0 0 0 6 0 0 0 0 0 | 0 3 0 0 3 0 3 6 0 0 0 0 | 1 0 1 3 3 0
oo3oo3oo4oo&#x | 1 1 | * * 384 * * * | 0 0 1 1 1 1 0 0 0 0 0 | 0 0 1 1 1 1 1 1 0 0 0 0 | 0 1 1 1 1 0
.x .. .. .. | 0 2 | * * * 96 * * | 0 0 2 0 0 0 2 2 0 0 0 | 0 0 2 1 2 0 0 0 1 2 1 0 | 0 1 2 1 0 1
.. .x .. .. | 0 2 | * * * * 192 * | 0 0 0 1 0 0 1 0 1 1 0 | 0 0 1 0 0 1 1 0 1 1 0 1 | 0 1 1 0 1 1
.. .. .. .x | 0 2 | * * * * * 192 | 0 0 0 0 0 1 0 1 0 1 1 | 0 0 0 0 1 0 1 1 0 1 1 1 | 0 0 1 1 1 1
---------------+--------+----------------------+--------------------------------------+-----------------------------------+---------------
.. o.3x. .. | 3 0 | 3 0 0 0 0 0 | 64 * * * * * * * * * * | 1 1 0 0 0 1 0 0 0 0 0 0 | 1 1 0 0 1 0
.. .. x.4x. | 8 0 | 4 4 0 0 0 0 | * 24 * * * * * * * * * | 0 2 0 0 0 0 0 2 0 0 0 0 | 1 0 0 1 2 0
ox .. .. ..&#x | 1 2 | 0 0 2 1 0 0 | * * 192 * * * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0
.. ox .. ..&#x | 1 2 | 0 0 2 0 1 0 | * * * 192 * * * * * * * | 0 0 1 0 0 1 1 0 0 0 0 0 | 0 1 1 0 1 0
.. .. xo ..&#x | 2 1 | 1 0 2 0 0 0 | * * * * 192 * * * * * * | 0 0 0 1 0 1 0 1 0 0 0 0 | 0 1 0 1 1 0
.. .. .. xx&#x | 2 2 | 0 1 2 0 0 1 | * * * * * 192 * * * * * | 0 0 0 0 1 0 1 1 0 0 0 0 | 0 0 1 1 1 0
.x3.x .. .. | 0 6 | 0 0 0 3 3 0 | * * * * * * 64 * * * * | 0 0 1 0 0 0 0 0 1 1 0 0 | 0 1 1 0 0 1
.x .. .. .x | 0 4 | 0 0 0 2 0 2 | * * * * * * * 96 * * * | 0 0 0 0 1 0 0 0 0 1 1 0 | 0 0 1 1 0 1
.. .x3.o .. | 0 3 | 0 0 0 0 3 0 | * * * * * * * * 64 * * | 0 0 0 0 0 1 0 0 1 0 0 1 | 0 1 0 0 1 1
.. .x .. .x | 0 4 | 0 0 0 0 2 2 | * * * * * * * * * 96 * | 0 0 0 0 0 0 1 0 0 1 0 1 | 0 0 1 0 1 1
.. .. .o4.x | 0 4 | 0 0 0 0 0 4 | * * * * * * * * * * 48 | 0 0 0 0 0 0 0 1 0 0 1 1 | 0 0 0 1 1 1
---------------+--------+----------------------+--------------------------------------+-----------------------------------+---------------
o.3o.3x. .. ♦ 4 0 | 6 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * | 1 1 0 0 0 0
.. o.3x.4x. ♦ 24 0 | 24 12 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 | * 8 * * * * * * * * * * | 1 0 0 0 1 0
ox3ox .. ..&#x ♦ 1 6 | 0 0 6 3 3 0 | 0 0 3 3 0 0 1 0 0 0 0 | * * 64 * * * * * * * * * | 0 1 1 0 0 0
ox .. xo ..&#x ♦ 2 2 | 1 0 4 1 0 0 | 0 0 2 0 2 0 0 0 0 0 0 | * * * 96 * * * * * * * * | 0 1 0 1 0 0
ox .. .. xx&#x ♦ 2 4 | 0 1 4 2 0 2 | 0 0 2 0 0 2 0 1 0 0 0 | * * * * 96 * * * * * * * | 0 0 1 1 0 0
.. ox3xo ..&#x ♦ 3 3 | 3 0 6 0 3 0 | 1 0 0 3 3 0 0 0 1 0 0 | * * * * * 64 * * * * * * | 0 1 0 0 1 0
.. ox .. xx&#x ♦ 2 4 | 0 1 4 0 2 2 | 0 0 0 2 0 2 0 0 0 1 0 | * * * * * * 96 * * * * * | 0 0 1 0 1 0
.. .. xo4xx&#x ♦ 8 4 | 4 4 8 0 0 4 | 0 1 0 0 4 4 0 0 0 0 1 | * * * * * * * 48 * * * * | 0 0 0 1 1 0
.x3.x3.o .. ♦ 0 12 | 0 0 0 6 12 0 | 0 0 0 0 0 0 4 0 4 0 0 | * * * * * * * * 16 * * * | 0 1 0 0 0 1
.x3.x .. .x ♦ 0 12 | 0 0 0 6 6 6 | 0 0 0 0 0 0 2 3 0 3 0 | * * * * * * * * * 32 * * | 0 0 1 0 0 1
.x .. .o4.x ♦ 0 8 | 0 0 0 4 0 8 | 0 0 0 0 0 0 0 4 0 0 2 | * * * * * * * * * * 24 * | 0 0 0 1 0 1
.. .x3.o4.x ♦ 0 24 | 0 0 0 0 24 24 | 0 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * * * 8 | 0 0 0 0 1 1
---------------+--------+----------------------+--------------------------------------+-----------------------------------+---------------
o.3o.3x.4x. ♦ 64 0 | 96 32 0 0 0 0 | 64 24 0 0 0 0 0 0 0 0 0 | 16 8 0 0 0 0 0 0 0 0 0 0 | 1 * * * * *
ox3ox3xo ..&#x ♦ 4 12 | 6 0 24 6 12 0 | 4 0 12 12 12 0 4 0 4 0 0 | 1 0 4 6 0 4 0 0 1 0 0 0 | * 16 * * * *
ox3ox .. xx&#x ♦ 2 12 | 0 1 12 6 6 6 | 0 0 6 6 0 6 2 3 0 3 0 | 0 0 2 0 3 0 3 0 0 1 0 0 | * * 32 * * *
ox .. xo4xx&#x ♦ 8 8 | 4 4 16 4 0 8 | 0 1 8 0 8 8 0 4 0 0 2 | 0 0 0 4 4 0 0 2 0 0 1 0 | * * * 24 * *
.. ox3xo4xx&#x ♦ 24 24 | 24 12 48 0 24 24 | 8 6 0 24 24 24 0 0 8 12 6 | 0 1 0 0 0 8 12 6 0 0 0 1 | * * * * 8 *
.x3.x3.o4.x ♦ 0 192 | 0 0 0 96 192 192 | 0 0 0 0 0 0 64 96 64 96 48 | 0 0 0 0 0 0 0 0 16 32 24 8 | * * * * * 1
© 2004-2025 | top of page |