Acronym | hippyp |
Name |
hexagon-pyramidal prism, line || hip |
Circumradius | ∞ i.e. flat in euclidean space |
Dihedral angles | |
Face vector | 14, 31, 26, 9 |
Confer |
|
It either can be thought of as a degenerate 4D segmentotope with zero height, or as a 3D euclidean decomposition of the larger base into smaller bits.
Incidence matrix according to Dynkin symbol
xx ox6oo&#x → height = 0
(line || hip)
o. o.6o. | 2 * | 1 6 0 0 | 6 6 0 0 | 6 1 0
.o .o6.o | * 12 | 0 1 1 2 | 1 2 2 1 | 2 1 1
------------+------+-----------+----------+------
x. .. .. | 2 0 | 1 * * * | 6 0 0 0 | 6 0 0
oo oo6oo&#x | 1 1 | * 12 * * | 1 2 0 0 | 2 1 0
.x .. .. | 0 2 | * * 6 * | 1 0 2 0 | 2 0 1
.. .x .. | 0 2 | * * * 12 | 0 1 1 1 | 1 1 1
------------+------+-----------+----------+------
xx .. ..&#x | 2 2 | 1 2 1 0 | 6 * * * | 2 0 0
.. ox ..&#x | 1 2 | 0 2 0 1 | * 12 * * | 1 1 0
.x .x .. | 0 4 | 0 0 2 2 | * * 6 * | 1 0 1
.. .x6.o | 0 6 | 0 0 0 6 | * * * 2 | 0 1 1
------------+------+-----------+----------+------
xx ox ..&#x ♦ 2 4 | 1 4 2 2 | 2 2 1 0 | 6 * *
.. ox6oo&#x ♦ 1 6 | 0 6 0 6 | 0 6 0 1 | * 2 *
.x .x6.o ♦ 0 12 | 0 0 6 12 | 0 0 6 2 | * * 1
xx ox3ox&#x → height = 0
(line || hip)
o. o.3o. | 2 * | 1 6 0 0 0 | 6 3 3 0 0 0 | 3 3 1 0
.o .o3.o | * 12 | 0 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1
------------+------+------------+-------------+--------
x. .. .. | 2 0 | 1 * * * * | 6 0 0 0 0 0 | 3 3 0 0
oo oo3oo&#x | 1 1 | * 12 * * * | 1 1 1 0 0 0 | 1 1 1 0
.x .. .. | 0 2 | * * 6 * * | 1 0 0 1 1 0 | 1 1 0 1
.. .x .. | 0 2 | * * * 6 * | 0 1 0 1 0 1 | 1 0 1 1
.. .. .x | 0 2 | * * * * 6 | 0 0 1 0 1 1 | 0 1 1 1
------------+------+------------+-------------+--------
xx .. ..&#x | 2 2 | 1 2 1 0 0 | 6 * * * * * | 1 1 0 0
.. ox ..&#x | 1 2 | 0 2 0 1 0 | * 6 * * * * | 1 0 1 0
.. .. ox&#x | 1 2 | 0 2 0 0 1 | * * 6 * * * | 0 1 1 0
.x .x .. | 0 4 | 0 0 2 2 0 | * * * 3 * * | 1 0 0 1
.x .. .x | 0 4 | 0 0 2 0 2 | * * * * 3 * | 0 1 0 1
.. .x3.x | 0 6 | 0 0 0 3 3 | * * * * * 2 | 0 0 1 1
------------+------+------------+-------------+--------
xx ox ..&#x ♦ 2 4 | 1 4 2 2 0 | 2 2 0 1 0 0 | 3 * * *
xx .. ox&#x ♦ 2 4 | 1 4 2 0 2 | 2 0 2 0 1 0 | * 3 * *
.. ox3ox&#x ♦ 1 6 | 0 6 0 3 3 | 0 3 3 0 0 1 | * * 2 *
.x .x3.x ♦ 0 12 | 0 0 6 6 6 | 0 0 0 3 3 2 | * * * 1
hippy || hippy → height = 1
1 * * * | 6 1 0 0 0 0 | 6 6 0 0 0 0 | 1 6 0 0 top-tip
* 6 * * | 1 0 2 1 0 0 | 2 1 1 0 0 0 | 1 2 1 0 top-base
* * 1 * | 0 1 0 0 6 0 | 0 6 0 0 6 0 | 0 6 0 1 bottom-tip
* * * 6 | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 0 2 1 1 bottom-base
----------+-------------+-------------+--------
1 1 0 0 | 6 * * * * * | 2 1 0 0 0 0 | 1 2 0 0
1 0 1 0 | * 1 * * * * | 0 6 0 0 0 0 | 0 6 0 0
0 2 0 0 | * * 6 * * * | 1 0 1 1 0 0 | 1 1 1 0
0 1 0 1 | * * * 6 * * | 0 1 0 2 0 0 | 0 2 1 0
0 0 1 1 | * * * * 6 * | 0 1 0 0 2 0 | 0 2 0 1
0 0 0 2 | * * * * * 6 | 0 0 0 1 1 1 | 0 1 1 1
----------+-------------+-------------+--------
1 2 0 0 | 2 0 1 0 0 0 | 6 * * * * * | 1 1 0 0
1 1 1 1 | 1 1 0 1 1 0 | * 6 * * * * | 0 2 0 0
0 6 0 0 | 0 0 6 0 0 0 | * * 1 * * * | 1 0 1 0
0 2 0 2 | 0 0 1 2 0 1 | * * * 6 * * | 0 1 1 0
0 0 1 2 | 0 0 0 0 2 1 | * * * * 6 * | 0 1 0 1
0 0 0 6 | 0 0 0 0 0 6 | * * * * * 1 | 0 0 1 1
----------+-------------+-------------+--------
♦ 1 6 0 0 | 6 0 6 0 0 0 | 6 0 1 0 0 0 | 1 * * *
♦ 1 2 1 2 | 2 1 1 2 2 1 | 1 2 0 1 1 0 | * 6 * *
♦ 0 6 0 6 | 0 0 6 6 0 5 | 0 0 1 6 0 1 | * * 1 *
♦ 0 0 1 6 | 0 0 0 0 6 6 | 0 0 0 0 6 1 | * * * 1
© 2004-2025 | top of page |