Acronym srittit Name small rhombitesseractic tetracomb,cantellated tesseractic tetracomb Confer general polytopal classes: partial Stott expansions Externallinks

Incidence matrix according to Dynkin symbol

```x4o3x3o4o   (N → ∞)

. . . . . | 24N |   2   8 |  1   8   4   8 |  4   8   4  2 | 4  2 1
----------+-----+---------+----------------+---------------+-------
x . . . . |   2 | 24N   * |  1   4   0   0 |  4   4   0  0 | 4  1 0
. . x . . |   2 |   * 96N |  0   1   1   2 |  1   2   2  1 | 2  1 1
----------+-----+---------+----------------+---------------+-------
x4o . . . |   4 |   4   0 | 6N   *   *   * |  4   0   0  0 | 4  0 0
x . x . . |   4 |   2   2 |  * 48N   *   * |  1   2   0  0 | 2  1 0
. o3x . . |   3 |   0   3 |  *   * 32N   * |  1   0   2  0 | 2  0 1
. . x3o . |   3 |   0   3 |  *   *   * 64N |  0   1   1  1 | 1  1 1
----------+-----+---------+----------------+---------------+-------
x4o3x . . ♦  24 |  24  24 |  6  12   8   0 | 4N   *   *  * | 2  0 0
x . x3o . ♦   6 |   3   6 |  0   3   0   2 |  * 32N   *  * | 1  1 0
. o3x3o . ♦   6 |   0  12 |  0   0   4   4 |  *   * 16N  * | 1  0 1
. . x3o4o ♦   6 |   0  12 |  0   0   0   8 |  *   *   * 8N | 0  1 1
----------+-----+---------+----------------+---------------+-------
x4o3x3o . ♦  96 |  96 192 | 24  96  64  64 |  8  32  16  0 | N  * *
x . x3o4o ♦  12 |   6  24 |  0  12   0  16 |  0   8   0  2 | * 4N *
. o3x3o4o ♦  24 |   0  96 |  0   0  32  64 |  0   0  16  8 | *  * N

snubbed forms: s4o3x3o4o
```

```o3x3o *b3o4x   (N → ∞)

. . .    . . | 48N |    8   2 |   4   4   4   8   1 |   2   2   4   2   4  4 |  1  2 2 2
-------------+-----+----------+---------------------+------------------------+----------
. x .    . . |   2 | 192N   * |   1   1   1   1   0 |   1   1   1   1   1  1 |  1  1 1 1
. . .    . x |   2 |    * 48N |   0   0   0   4   1 |   0   0   2   0   2  4 |  0  1 2 2
-------------+-----+----------+---------------------+------------------------+----------
o3x .    . . |   3 |    3   0 | 64N   *   *   *   * |   1   1   1   0   0  0 |  1  1 1 0
. x3o    . . |   3 |    3   0 |   * 64N   *   *   * |   1   0   0   1   1  0 |  1  1 0 1
. x . *b3o . |   3 |    3   0 |   *   * 64N   *   * |   0   1   0   1   0  1 |  1  0 1 1
. x .    . x |   4 |    2   2 |   *   *   * 96N   * |   0   0   1   0   1  1 |  0  1 1 1
. . .    o4x |   4 |    0   4 |   *   *   *   * 12N |   0   0   0   0   0  4 |  0  0 2 2
-------------+-----+----------+---------------------+------------------------+----------
o3x3o    . . ♦   6 |   12   0 |   4   4   0   0   0 | 16N   *   *   *   *  * |  1  1 0 0
o3x . *b3o . ♦   6 |   12   0 |   4   0   4   0   0 |   * 16N   *   *   *  * |  1  0 1 0
o3x .    . x ♦   6 |    6   3 |   2   0   0   3   0 |   *   * 32N   *   *  * |  0  1 1 0
. x3o *b3o . ♦   6 |   12   0 |   0   4   4   0   0 |   *   *   * 16N   *  * |  1  0 0 1
. x3o    . x ♦   6 |    6   3 |   0   2   0   3   0 |   *   *   *   * 32N  * |  0  1 0 1
. x . *b3o4x ♦  24 |   24  24 |   0   0   8  12   6 |   *   *   *   *   * 8N |  0  0 1 1
-------------+-----+----------+---------------------+------------------------+----------
o3x3o *b3o . ♦  24 |   96   0 |  32  32  32   0   0 |   8   8   0   8   0  0 | 2N  * * *
o3x3o    . x ♦  12 |   24   6 |   8   8   0  12   0 |   2   0   4   0   4  0 |  * 8N * *
o3x . *b3o4x ♦  96 |  192  96 |  64   0  64  96  24 |   0  16  32   0   0  8 |  *  * N *
. x3o *b3o4x ♦  96 |  192  96 |   0  64  64  96  24 |   0   0   0  16  32  8 |  *  * * N
```