Acronym thext
Name truncated hexadecachoric tetracomb,
truncated demitesseractic tetracomb,
cantic tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x3x3o4o3o   (N → ∞)

. . . . . | 24N |   1   8 |   8  12 |  12   6 |  6 1
----------+-----+---------+---------+---------+-----
x . . . . |   2 | 12N   *    8   0 |  12   0 |  6 0
. x . . . |   2 |   * 96N |   1   3 |   3   3 |  3 1
----------+-----+---------+---------+---------+-----
x3x . . . |   6 |   3   3 | 32N   * |   3   0 |  3 0
. x3o . . |   3 |   0   3 |   * 96N |   1   2 |  2 1
----------+-----+---------+---------+---------+-----
x3x3o . .   12 |   6  12 |   4   4 | 24N   * |  2 0
. x3o4o .    6 |   0  12 |   0   8 |   * 24N |  1 1
----------+-----+---------+---------+---------+-----
x3x3o4o .   48 |  24  96 |  32  64 |  16   8 | 3N *
. x3o4o3o   24 |   0  96 |   0  96 |   0  24 |  * N

x3x3o *b3o4o   (N → ∞)

. . .    . . | 24N |   1   8 |   8   4   8 |  4   8   4  2 |  4 2 1
-------------+-----+---------+-------------+---------------+-------
x . .    . . |   2 | 12N   *    8   0   0 |  4   8   0  0 |  4 2 0
. x .    . . |   2 |   * 96N |   1   1   2 |  1   2   2  1 |  2 1 1
-------------+-----+---------+-------------+---------------+-------
x3x .    . . |   6 |   3   3 | 32N   *   * |  1   2   0  0 |  2 1 0
. x3o    . . |   3 |   0   3 |   * 32N   * |  1   0   2  0 |  2 0 1
. x . *b3o . |   3 |   0   3 |   *   * 64N |  0   1   1  1 |  1 1 1
-------------+-----+---------+-------------+---------------+-------
x3x3o    . .   12 |   6  12 |   4   4   0 | 8N   *   *  * |  2 0 0
x3x . *b3o .   12 |   6  12 |   4   0   4 |  * 16N   *  * |  1 1 0
. x3o *b3o .    6 |   0  12 |   0   4   4 |  *   * 16N  * |  1 0 1
. x . *b3o4o    6 |   0  12 |   0   0   8 |  *   *   * 8N |  0 1 1
-------------+-----+---------+-------------+---------------+-------
x3x3o *b3o .   48 |  24  96 |  32  32  32 |  8   8   8  0 | 2N * *
x3x . *b3o4o   48 |  24  96 |  32   0  64 |  0  16   0  8 |  * N *
. x3o *b3o4o   24 |   0  96 |   0  32  64 |  0   0  16  8 |  * * N

x3x3o *b3o *b3o   (N → ∞)

. . .    .    . | 24N |   1   8 |   8   4   4   4 |  4  4  4  2  2  2 | 2 2 2 1
----------------+-----+---------+-----------------+-------------------+--------
x . .    .    . |   2 | 12N   *    8   0   0   0 |  4  4  4  0  0  0 | 2 2 2 0
. x .    .    . |   2 |   * 96N |   1   1   1   1 |  1  1  1  1  1  1 | 1 1 1 1
----------------+-----+---------+-----------------+-------------------+--------
x3x .    .    . |   6 |   3   3 | 32N   *   *   * |  1  1  1  0  0  0 | 1 1 1 0
. x3o    .    . |   3 |   0   3 |   * 32N   *   * |  1  0  0  1  1  0 | 1 1 0 1
. x . *b3o    . |   3 |   0   3 |   *   * 32N   * |  0  1  0  1  0  1 | 1 0 1 1
. x .    . *b3o |   3 |   0   3 |   *   *   * 32N |  0  0  1  0  1  1 | 0 1 1 1
----------------+-----+---------+-----------------+-------------------+--------
x3x3o    .    .   12 |   6  12 |   4   4   0   0 | 8N  *  *  *  *  * | 1 1 0 0
x3x . *b3o    .   12 |   6  12 |   4   0   4   0 |  * 8N  *  *  *  * | 1 0 1 0
x3x .    . *b3o   12 |   6  12 |   4   0   0   4 |  *  * 8N  *  *  * | 0 1 1 0
. x3o *b3o    .    6 |   0  12 |   0   4   4   0 |  *  *  * 8N  *  * | 1 0 0 1
. x3o    . *b3o    6 |   0  12 |   0   4   0   4 |  *  *  *  * 8N  * | 0 1 0 1
. x . *b3o *b3o    6 |   0  12 |   0   0   4   4 |  *  *  *  *  * 8N | 0 0 1 1
----------------+-----+---------+-----------------+-------------------+--------
x3x3o *b3o    .   48 |  24  96 |  32  32  32   0 |  8  8  0  8  0  0 | N * * *
x3x3o    . *b3o   48 |  24  96 |  32  32   0  32 |  8  0  8  0  8  0 | * N * *
x3x . *b3o *b3o   48 |  24  96 |  32   0  32  32 |  0  8  8  0  0  8 | * * N *
. x3o *b3o *b3o   24 |   0  96 |   0  32  32  32 |  0  0  0  8  8  8 | * * * N

s4o3x3o4o   (N → ∞)

demi( . . . . . ) | 24N |   1   8 |   4   8   8 |   4  2  4   8 | 1  4 2
------------------+-----+---------+-------------+---------------+-------
      s4o . . .   |   2 | 12N   * |   0   0   8 |   0  0  4   8 | 0  4 2
demi( . . x . . ) |   2 |   * 96N |   1   2   1 |   2  1  1   2 | 1  2 1
------------------+-----+---------+-------------+---------------+-------
demi( . o3x . . ) |   3 |   0   3 | 32N   *   * |   2  0  1   0 | 1  2 0
demi( . . x3o . ) |   3 |   0   3 |   * 64N   * |   1  1  0   1 | 1  1 1
sefa( s4o3x . . ) |   6 |   3   3 |   *   * 32N |   0  0  1   2 | 0  2 1
------------------+-----+---------+-------------+---------------+-------
demi( . o3x3o . )    6 |   0  12 |   4   4   0 | 16N  *  *   * | 1  1 0
demi( . . x3o4o )    6 |   0  12 |   0   8   0 |   * 8N  *   * | 1  0 1
      s4o3x . .     12 |   6  12 |   4   0   4 |   *  * 8N   * | 0  2 0
sefa( s4o3x3o . )   12 |   6  12 |   0   4   4 |   *  *  * 16N | 0  1 1
------------------+-----+---------+-------------+---------------+-------
demi( . o3x3o4o )   24 |   0  96 |  32  64   0 |  16  8  0   0 | N  * *
      s4o3x3o .     48 |  24  96 |  32  32  32 |   8  0  8   8 | * 2N *
sefa( s4o3x3o4o )   48 |  24  96 |   0  64  32 |   0  8  0  16 | *  * N

starting figure: x4o3x3o4o

© 2004-2025
top of page