Acronym qriddip Name quasi-rhombicosidodecahedron prism Circumradius sqrt[3-sqrt(5)] = 0.874032 Colonel of regiment gaddiddip Dihedral angles at {4} between cube and qrid:   90° at {5/2} between qrid and stip:   90° at {3} between qrid and trip:   90° at {4} between cube and trip:   arccos((sqrt(5)-1)/sqrt(12)) = 69.094843° at {4} between cube and stip:   arccos(sqrt[(5-sqrt(5))/10]) = 58.282526° Externallinks

As abstract polytope qriddip is isomorphic to sriddip, thereby replacing retrograde pentagrams by prograde pentagons, resp. replacing qrid by srid and stip by pip.

Incidence matrix according to Dynkin symbol

```x x3o5/3x

. . .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
----------+-----+------------+----------------+-----------
x x .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. . o5/3x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
----------+-----+------------+----------------+-----------
x x3o   . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x .   x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x . o5/3x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3o5/3x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2
```

```x x3/2o5/2x

. .   .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
------------+-----+------------+----------------+-----------
x .   .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
------------+-----+------------+----------------+-----------
x x   .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3/2o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x   .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. .   o5/2x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
------------+-----+------------+----------------+-----------
x x3/2o   . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x   .   x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x .   o5/2x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3/2o5/2x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2
```

```xx3oo5/3xx&#x   → height = 1
(qrid || qrid)

o.3o.5/3o.    | 60  * |  2  2  1  0  0 |  1  2  1  2  2  0  0  0 | 1  1  2  1 0
.o3.o5/3.o    |  * 60 |  0  0  1  2  2 |  0  0  0  2  2  1  2  1 | 0  1  2  1 1
--------------+-------+----------------+-------------------------+-------------
x. ..   ..    |  2  0 | 60  *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. ..   x.    |  2  0 |  * 60  *  *  * |  0  1  1  0  1  0  0  0 | 1  0  1  1 0
oo3oo5/3oo&#x |  1  1 |  *  * 60  *  * |  0  0  0  2  2  0  0  0 | 0  1  2  1 0
.x ..   ..    |  0  2 |  *  *  * 60  * |  0  0  0  1  0  1  1  0 | 0  1  1  0 1
.. ..   .x    |  0  2 |  *  *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.   ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. ..   x.    |  4  0 |  2  2  0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5/3x.    |  5  0 |  0  5  0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xx ..   ..&#x |  2  2 |  1  0  2  1  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o   ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x ..   .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5/3.x    |  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.5/3x.    ♦ 60  0 | 60 60  0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xx3oo   ..&#x ♦  3  3 |  3  0  3  3  0 |  1  0  0  3  0  1  0  0 | * 20  *  * *
xx ..   xx&#x ♦  4  4 |  2  2  4  2  2 |  0  1  0  2  2  0  1  0 | *  * 30  * *
.. oo5/3xx&#x ♦  5  5 |  0  5  5  0  5 |  0  0  1  0  5  0  0  1 | *  *  * 12 *
.x3.o5/3.x    ♦  0 24 |  0  0  0 24 24 |  0  0  0  0  0 20 30 12 | *  *  *  * 1

```