Acronym qriddip
Name quasi-rhombicosidodecahedron prism
Circumradius sqrt[3-sqrt(5)] = 0.874032
Colonel of regiment gaddiddip
Dihedral angles
  • at {4} between cube and qrid:   90°
  • at {5/2} between qrid and stip:   90°
  • at {3} between qrid and trip:   90°
  • at {4} between cube and trip:   arccos((sqrt(5)-1)/sqrt(12)) = 69.094843°
  • at {4} between cube and stip:   arccos(sqrt[(5-sqrt(5))/10]) = 58.282526°
Face vector 120, 300, 244, 64
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope qriddip is isomorphic to sriddip, thereby replacing retrograde pentagrams by prograde pentagons, resp. replacing qrid by srid and stip by pip.


Incidence matrix according to Dynkin symbol

x x3o5/3x

. . .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
----------+-----+------------+----------------+-----------
x x .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. . o5/3x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
----------+-----+------------+----------------+-----------
x x3o   .    6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x .   x    8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x . o5/3x   10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3o5/3x   60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2

x x3/2o5/2x

. .   .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
------------+-----+------------+----------------+-----------
x .   .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
------------+-----+------------+----------------+-----------
x x   .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3/2o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x   .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. .   o5/2x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
------------+-----+------------+----------------+-----------
x x3/2o   .    6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x   .   x    8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x .   o5/2x   10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3/2o5/2x   60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2

xx3oo5/3xx&#x   → height = 1
(qrid || qrid)

o.3o.5/3o.    | 60  * |  2  2  1  0  0 |  1  2  1  2  2  0  0  0 | 1  1  2  1 0
.o3.o5/3.o    |  * 60 |  0  0  1  2  2 |  0  0  0  2  2  1  2  1 | 0  1  2  1 1
--------------+-------+----------------+-------------------------+-------------
x. ..   ..    |  2  0 | 60  *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. ..   x.    |  2  0 |  * 60  *  *  * |  0  1  1  0  1  0  0  0 | 1  0  1  1 0
oo3oo5/3oo&#x |  1  1 |  *  * 60  *  * |  0  0  0  2  2  0  0  0 | 0  1  2  1 0
.x ..   ..    |  0  2 |  *  *  * 60  * |  0  0  0  1  0  1  1  0 | 0  1  1  0 1
.. ..   .x    |  0  2 |  *  *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.   ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. ..   x.    |  4  0 |  2  2  0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5/3x.    |  5  0 |  0  5  0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xx ..   ..&#x |  2  2 |  1  0  2  1  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o   ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x ..   .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5/3.x    |  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.5/3x.     60  0 | 60 60  0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xx3oo   ..&#x   3  3 |  3  0  3  3  0 |  1  0  0  3  0  1  0  0 | * 20  *  * *
xx ..   xx&#x   4  4 |  2  2  4  2  2 |  0  1  0  2  2  0  1  0 | *  * 30  * *
.. oo5/3xx&#x   5  5 |  0  5  5  0  5 |  0  0  1  0  5  0  0  1 | *  *  * 12 *
.x3.o5/3.x      0 24 |  0  0  0 24 24 |  0  0  0  0  0 20 30 12 | *  *  *  * 1


© 2004-2024
top of page