Acronym | qriddip |
Name | quasi-rhombicosidodecahedron prism |
Circumradius | sqrt[3-sqrt(5)] = 0.874032 |
Colonel of regiment | gaddiddip |
Dihedral angles | |
Face vector | 120, 300, 244, 64 |
Confer |
|
External links |
As abstract polytope qriddip is isomorphic to sriddip, thereby replacing retrograde pentagrams by prograde pentagons, resp. replacing qrid by srid and stip by pip.
Incidence matrix according to Dynkin symbol
x x3o5/3x . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ----------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 ----------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 60 * | 0 1 0 1 . . o5/3x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 ----------+-----+------------+----------------+----------- x x3o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 30 * * x . o5/3x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3o5/3x ♦ 60 | 0 60 60 | 0 0 20 30 12 | * * * 2
x x3/2o5/2x . . . . | 120 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ------------+-----+------------+----------------+----------- x . . . | 2 | 60 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 120 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 120 | 0 1 0 1 1 | 0 1 1 1 ------------+-----+------------+----------------+----------- x x . . | 4 | 2 2 0 | 60 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 60 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 40 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 60 * | 0 1 0 1 . . o5/2x | 5 | 0 0 5 | * * * * 24 | 0 0 1 1 ------------+-----+------------+----------------+----------- x x3/2o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 20 * * * x x . x ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 30 * * x . o5/2x ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 12 * . x3/2o5/2x ♦ 60 | 0 60 60 | 0 0 20 30 12 | * * * 2
xx3oo5/3xx&#x → height = 1
(qrid || qrid)
o.3o.5/3o. | 60 * | 2 2 1 0 0 | 1 2 1 2 2 0 0 0 | 1 1 2 1 0
.o3.o5/3.o | * 60 | 0 0 1 2 2 | 0 0 0 2 2 1 2 1 | 0 1 2 1 1
--------------+-------+----------------+-------------------------+-------------
x. .. .. | 2 0 | 60 * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 0
.. .. x. | 2 0 | * 60 * * * | 0 1 1 0 1 0 0 0 | 1 0 1 1 0
oo3oo5/3oo&#x | 1 1 | * * 60 * * | 0 0 0 2 2 0 0 0 | 0 1 2 1 0
.x .. .. | 0 2 | * * * 60 * | 0 0 0 1 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * * 60 | 0 0 0 0 1 0 1 1 | 0 0 1 1 1
--------------+-------+----------------+-------------------------+-------------
x.3o. .. | 3 0 | 3 0 0 0 0 | 20 * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 2 0 0 0 | * 30 * * * * * * | 1 0 1 0 0
.. o.5/3x. | 5 0 | 0 5 0 0 0 | * * 12 * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * * 60 * * * * | 0 1 1 0 0
.. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * * 60 * * * | 0 0 1 1 0
.x3.o .. | 0 3 | 0 0 0 3 0 | * * * * * 20 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 2 2 | * * * * * * 30 * | 0 0 1 0 1
.. .o5/3.x | 0 5 | 0 0 0 0 5 | * * * * * * * 12 | 0 0 0 1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.5/3x. ♦ 60 0 | 60 60 0 0 0 | 20 30 12 0 0 0 0 0 | 1 * * * *
xx3oo ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 0 3 0 1 0 0 | * 20 * * *
xx .. xx&#x ♦ 4 4 | 2 2 4 2 2 | 0 1 0 2 2 0 1 0 | * * 30 * *
.. oo5/3xx&#x ♦ 5 5 | 0 5 5 0 5 | 0 0 1 0 5 0 0 1 | * * * 12 *
.x3.o5/3.x ♦ 0 24 | 0 0 0 24 24 | 0 0 0 0 0 20 30 12 | * * * * 1
© 2004-2024 | top of page |