Acronym | squasrid |
Name | square - small-rhombicosidodecahedron duoprism |
Circumradius | sqrt[sqrt(5)+13/4] = 2.342236 |
Face vector | 240, 720, 788, 372, 66 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o x3o5x . . . . . | 240 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 ----------+-----+-------------+----------------------+-------------------+----------- x . . . . | 2 | 240 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 240 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 240 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 ----------+-----+-------------+----------------------+-------------------+----------- x4o . . . | 4 | 4 0 0 | 60 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 x . x . . | 4 | 2 2 0 | * 240 * * * * | 1 0 1 1 0 0 | 1 1 0 1 x . . . x | 4 | 2 0 2 | * * 240 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o . | 3 | 0 3 0 | * * * 80 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 2 | * * * * 120 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o5x | 5 | 0 0 5 | * * * * * 48 | 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+-------------+----------------------+-------------------+----------- x4o x . . ♦ 8 | 8 4 0 | 2 4 0 0 0 0 | 60 * * * * * | 1 1 0 0 x4o . . x ♦ 8 | 8 0 4 | 2 0 4 0 0 0 | * 60 * * * * | 0 1 1 0 x . x3o . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * 80 * * * | 1 0 0 1 x . x . x ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * 120 * * | 0 1 0 1 x . . o5x ♦ 10 | 5 0 10 | 0 0 5 0 0 2 | * * * * 48 * | 0 0 1 1 . . x3o5x ♦ 60 | 0 60 60 | 0 0 0 20 30 12 | * * * * * 4 | 0 0 0 2 ----------+-----+-------------+----------------------+-------------------+----------- x4o x3o . ♦ 12 | 12 12 0 | 3 12 0 4 0 0 | 3 0 4 0 0 0 | 20 * * * x4o x . x ♦ 16 | 16 8 8 | 4 8 8 0 4 0 | 2 2 0 4 0 0 | * 30 * * x4o . o5x ♦ 20 | 20 0 20 | 5 0 20 0 0 4 | 0 5 0 0 4 0 | * * 12 * x . x3o5x ♦ 120 | 60 120 120 | 0 60 60 40 60 24 | 0 0 20 30 12 2 | * * * 4
x x x3o5x . . . . . | 240 | 1 1 2 2 | 1 2 2 2 2 1 2 1 | 2 2 1 2 1 1 2 1 1 | 1 2 1 1 1 ----------+-----+-----------------+------------------------------+---------------------------+------------- x . . . . | 2 | 120 * * * | 1 2 2 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 120 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 2 1 0 | 1 2 1 0 1 . . x . . | 2 | * * 240 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . . x | 2 | * * * 240 | 0 0 1 0 1 0 1 1 | 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------+-----+-----------------+------------------------------+---------------------------+------------- x x . . . | 4 | 2 2 0 0 | 60 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 120 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 120 * * * * * | 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x x . . | 4 | 0 2 2 0 | * * * 120 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 120 * * * | 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3o . | 3 | 0 0 3 0 | * * * * * 80 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 2 | * * * * * * 120 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o5x | 5 | 0 0 0 5 | * * * * * * * 48 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------+-----+-----------------+------------------------------+---------------------------+------------- x x x . . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 0 0 | 60 * * * * * * * * | 1 1 0 0 0 x x . . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 0 0 | * 60 * * * * * * * | 0 1 1 0 0 x . x3o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 0 | * * 40 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 2 0 | * * * 60 * * * * * | 0 1 0 1 0 x . . o5x ♦ 10 | 5 0 0 10 | 0 0 5 0 0 0 0 2 | * * * * 24 * * * * | 0 0 1 1 0 . x x3o . ♦ 6 | 0 3 6 0 | 0 0 0 3 0 2 0 0 | * * * * * 40 * * * | 1 0 0 0 1 . x x . x ♦ 8 | 0 4 4 4 | 0 0 0 2 2 0 2 0 | * * * * * * 60 * * | 0 1 0 0 1 . x . o5x ♦ 10 | 0 5 0 10 | 0 0 0 0 5 0 0 2 | * * * * * * * 24 * | 0 0 1 0 1 . . x3o5x ♦ 60 | 0 0 60 60 | 0 0 0 0 0 20 30 12 | * * * * * * * * 4 | 0 0 0 1 1 ----------+-----+-----------------+------------------------------+---------------------------+------------- x x x3o . ♦ 12 | 6 6 12 0 | 3 6 0 6 0 4 0 0 | 3 0 2 0 0 2 0 0 0 | 20 * * * * x x x . x ♦ 16 | 8 8 8 8 | 4 4 4 4 4 0 4 0 | 2 2 0 2 0 0 2 0 0 | * 30 * * * x x . o5x ♦ 20 | 10 10 0 20 | 5 0 10 0 10 0 0 4 | 0 5 0 0 2 0 0 2 0 | * * 12 * * x . x3o5x ♦ 120 | 60 0 120 120 | 0 60 60 0 0 40 60 24 | 0 0 20 30 12 0 0 0 2 | * * * 2 * . x x3o5x ♦ 120 | 0 60 120 120 | 0 0 0 60 60 40 60 24 | 0 0 0 0 0 20 30 12 2 | * * * * 2
© 2004-2025 | top of page |