Acronym sososaz
Name small hepteractihepteractihecatonicosoctaexon
Circumradius sqrt[9+2 sqrt(2)]/2 = 1.719624
Inradius
wrt. hop
-[7+sqrt(2)]/sqrt(28) = -1.590137
Inradius
wrt. ax
(1+sqrt(2))/2 = 1.207107
Inradius
wrt. soxaxog
1/2 = 0.5
Coordinates ((1+sqrt(2))/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2)   & all permutations, all changes of sign
Dihedral angles
(at margins)
Face vector 896, 5376, 8512, 7280, 3808, 1148, 156
Confer
general polytopal classes:
Wythoffian polyexa  
analogs:
socco series  

As abstract polytope sososaz is isomorphic to gososaz, thereby replacing octagons by octagrams, resp. by gocco, resp. steth by gittith, resp. sinnont by ginnont, and soxaxog by goxaxog.


Incidence matrix according to Dynkin symbol

o3o3o3o3o3x4x4/3*e

. . . . . . .      | 896 |    6    6 |   15   15   6 |   20   20  15 |   15  15  20 |   6   6 15 |   1  1  6
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
. . . . . x .      |   2 | 2688    * |    5    0   1 |   10    0   5 |   10   0  10 |   5   0 10 |   1  0  5
. . . . . . x      |   2 |    * 2688 |    0    5   1 |    0   10   5 |    0  10  10 |   0   5 10 |   0  1  5
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
. . . . o3x .      |   3 |    3    0 | 4480    *   * |    4    0   1 |    6   0   4 |   4   0  6 |   1  0  4
. . . . o . x4/3*e |   4 |    0    4 |    * 3360   * |    0    4   1 |    0   6   4 |   0   4  6 |   0  1  4
. . . . . x4x      |   8 |    4    4 |    *    * 672     0    0   5 |    0   0  10 |   0   0 10 |   0  0  5
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
. . . o3o3x .         4 |    6    0 |    4    0   0 | 4480    *   * |    3   0   1 |   3   0  3 |   1  0  3
. . . o3o . x4/3*e    8 |    0   12 |    0    6   0 |    * 2240   * |    0   3   1 |   0   3  3 |   0  1  3
. . . . o3x4x4/3*e   24 |   24   24 |    8    6   6 |    *    * 560     0   0   4 |   0   0  6 |   0  0  4
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
. . o3o3o3x .         5 |   10    0 |   10    0   0 |    5    0   0 | 2688   *   * |   2   0  1 |   1  0  2
. . o3o3o . x4/3*e   16 |    0   32 |    0   24   0 |    0    8   0 |    * 840   * |   0   2  1 |   0  1  2
. . . o3o3x4x4/3*e   64 |   96   96 |   64   48  24 |   16    8   8 |    *   * 280 |   0   0  3 |   0  0  3
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
. o3o3o3o3x .         6 |   15    0 |   20    0   0 |   15    0   0 |    6   0   0 | 896   *  * |   1  0  1
. o3o3o3o . x4/3*e   32 |    0   80 |    0   80   0 |    0   40   0 |    0  10   0 |   * 168  * |   0  1  1
. . o3o3o3x4x4/3*e  160 |  320  320 |  320  240  80 |  160   80  40 |   32  10  10 |   *   * 84 |   0  0  2
-------------------+-----+-----------+---------------+---------------+--------------+------------+----------
o3o3o3o3o3x .         7 |   21    0 |   35    0   0 |   35    0   0 |   21   0   0 |   7   0  0 | 128  *  *
o3o3o3o3o . x4/3*e   64 |    0  192 |    0  240   0 |    0  160   0 |    0  60   0 |   0  12  0 |   * 14  *
. o3o3o3o3x4x4/3*e  384 |  960  960 | 1280  960 240 |  960  480 160 |  384 120  60 |  64  12 12 |   *  * 14

© 2004-2025
top of page