Acronym | gososaz |
Name | great hepteractihepteractihecatonicosoctaexon |
Circumradius | sqrt[9-2 sqrt(2)]/2 = 1.242133 |
Inradius wrt. hop | [7-sqrt(2)]/sqrt(28) = 1.055614 |
Inradius wrt. goxaxog | 1/2 = 0.5 |
Inradius wrt. ax | (sqrt(2)-1)/2 = 0.207107 |
Coordinates | ((sqrt(2)-1)/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Dihedral angles
(at margins) | |
Face vector | 896, 5376, 8512, 7280, 3808, 1148, 156 |
Confer |
|
As abstract polytope gososaz is isomorphic to sososaz, thereby replacing octagrams by octagons, resp. gocco by socco, gittith by steth, ginnont by sinnont, and goxaxog by soxaxog.
Incidence matrix according to Dynkin symbol
o3o3o3o3o3x4/3x4*e . . . . . . . | 896 | 6 6 | 15 15 6 | 20 20 15 | 15 15 20 | 6 6 15 | 1 1 6 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- . . . . . x . | 2 | 2688 * | 5 0 1 | 10 0 5 | 10 0 10 | 5 0 10 | 1 0 5 . . . . . . x | 2 | * 2688 | 0 5 1 | 0 10 5 | 0 10 10 | 0 5 10 | 0 1 5 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- . . . . o3x . | 3 | 3 0 | 4480 * * | 4 0 1 | 6 0 4 | 4 0 6 | 1 0 4 . . . . o . x4*e | 4 | 0 4 | * 3360 * | 0 4 1 | 0 6 4 | 0 4 6 | 0 1 4 . . . . . x4/3x | 8 | 4 4 | * * 672 ♦ 0 0 5 | 0 0 10 | 0 0 10 | 0 0 5 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- . . . o3o3x . ♦ 4 | 6 0 | 4 0 0 | 4480 * * | 3 0 1 | 3 0 3 | 1 0 3 . . . o3o . x4*e ♦ 8 | 0 12 | 0 6 0 | * 2240 * | 0 3 1 | 0 3 3 | 0 1 3 . . . . o3x4/3x4*e ♦ 24 | 24 24 | 8 6 6 | * * 560 ♦ 0 0 4 | 0 0 6 | 0 0 4 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- . . o3o3o3x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 2688 * * | 2 0 1 | 1 0 2 . . o3o3o . x4*e ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 840 * | 0 2 1 | 0 1 2 . . . o3o3x4/3x4*e ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 280 | 0 0 3 | 0 0 3 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- . o3o3o3o3x . ♦ 6 | 15 0 | 20 0 0 | 15 0 0 | 6 0 0 | 896 * * | 1 0 1 . o3o3o3o . x4*e ♦ 32 | 0 80 | 0 80 0 | 0 40 0 | 0 10 0 | * 168 * | 0 1 1 . . o3o3o3x4/3x4*e ♦ 160 | 320 320 | 320 240 80 | 160 80 40 | 32 10 10 | * * 84 | 0 0 2 -------------------+-----+-----------+---------------+---------------+--------------+------------+---------- o3o3o3o3o3x . ♦ 7 | 21 0 | 35 0 0 | 35 0 0 | 21 0 0 | 7 0 0 | 128 * * o3o3o3o3o . x4*e ♦ 64 | 0 192 | 0 240 0 | 0 160 0 | 0 60 0 | 0 12 0 | * 14 * . o3o3o3o3x4/3x4*e ♦ 384 | 960 960 | 1280 960 240 | 960 480 160 | 384 120 60 | 64 12 12 | * * 14
© 2004-2025 | top of page |