Acronym | sniddip, K-4.110 |
Name |
snub-dodecahedron prism, snub-icosidodecahedron prism |
Circumradius | sqrt[198+42 sqrt(5)+6 cbrt[20448+9140 sqrt(5)+12 sqrt(7137+3192 sqrt(5))]+6 cbrt[20448+9140 sqrt(5)-12 sqrt(7137+3192 sqrt(5))]]/12 = 2.213060 |
Dihedral angles | |
Face vector | 120, 360, 334, 94 |
Confer |
|
External links |
As abstract polytope sniddip is isomorphic to gosiddip, thereby replacing pentagons by (prograde) pentagrams, resp. replacing pip by stip and snid by gosid. – Further it is isomorphic to gisiddip, thereby replacing pentagons by retrograde pentagrams, resp. replacing pip by stip and snid by gisid. – Finally it is isomorphic to girsiddip, thereby replacing prograde icosahedral triangles and pentagons respectively by retrrograde icosahedral triangles and retrograde pentagrams resp. replacing pip by stip and snid by girsid.
Incidence matrix according to Dynkin symbol
x s3s5s . demi( . . . ) | 120 | 1 1 2 2 | 1 1 1 2 2 3 | 1 1 1 3 ----------------+-----+---------------+--------------------+----------- . ( s 2 s ) | 2 | 60 * * * | 1 0 0 0 0 2 | 0 0 1 2 x demi( . . . ) | 2 | * 60 * * | 1 0 0 2 2 0 | 1 1 0 3 . sefa( s3s . ) | 2 | * * 120 * | 0 1 0 1 0 1 | 1 0 1 1 . sefa( . s5s ) | 2 | * * * 120 | 0 0 1 0 1 1 | 0 1 1 1 ----------------+-----+---------------+--------------------+----------- x ( s 2 s ) | 4 | 2 2 0 0 | 30 * * * * * | 0 0 0 2 . s3s . ♦ 3 | 0 0 3 0 | * 40 * * * * | 1 0 1 0 . . s5s ♦ 5 | 0 0 0 5 | * * 24 * * * | 0 1 1 0 x sefa( s3s . ) | 4 | 0 2 2 0 | * * * 60 * * | 1 0 0 1 x sefa( . s5s ) | 4 | 0 2 0 2 | * * * * 60 * | 0 1 0 1 . sefa( s3s5s ) | 3 | 1 0 1 1 | * * * * * 120 | 0 0 1 1 ----------------+-----+---------------+--------------------+----------- x s3s . ♦ 6 | 0 3 6 0 | 0 2 0 3 0 0 | 20 * * * x . s5s ♦ 10 | 0 5 0 10 | 0 0 2 0 5 0 | * 12 * * . s3s5s ♦ 60 | 30 0 60 60 | 0 20 12 0 0 60 | * * 2 * x sefa( s3s5s ) ♦ 6 | 2 3 2 2 | 1 0 0 1 1 2 | * * * 60 starting figure: x x3x5x
s3s5s || s3s5s (snid || snid) demi( . . . ) | 60 * | 1 2 2 1 0 0 0 | 1 1 3 1 2 2 0 0 0 | 1 1 1 3 0 demi( . . . ) | * 60 | 0 0 0 1 1 2 2 | 0 0 0 1 2 2 1 1 3 | 0 1 1 3 1 ------------------------------+-------+----------------------+----------------------------+------------- s 2 s | 2 0 | 30 * * * * * * | 0 0 2 1 0 0 0 0 0 | 1 0 0 2 0 sefa( s3s . ) | 2 0 | * 60 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0 sefa( . s5s ) | 2 0 | * * 60 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * * 60 * * * | 0 0 0 1 2 2 0 0 0 | 0 1 1 3 0 s 2 s | 0 2 | * * * * 30 * * | 0 0 0 1 0 0 0 0 2 | 0 0 0 2 1 sefa( s3s . ) | 0 2 | * * * * * 60 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1 sefa( . s5s ) | 0 2 | * * * * * * 60 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 ------------------------------+-------+----------------------+----------------------------+------------- s3s . ♦ 3 0 | 0 3 0 0 0 0 0 | 20 * * * * * * * * | 1 1 0 0 0 . s5s ♦ 5 0 | 0 0 5 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0 sefa( s3s5s ) | 3 0 | 1 1 1 0 0 0 0 | * * 60 * * * * * * | 1 0 0 1 0 s 2 s || s 2 s | 2 2 | 1 0 0 2 1 0 0 | * * * 30 * * * * * | 0 0 0 2 0 sefa( s3s . ) || sefa( s3s . ) | 2 2 | 0 1 0 2 0 1 0 | * * * * 60 * * * * | 0 1 0 1 0 sefa( . s5s ) || sefa( . s5s ) | 2 2 | 0 0 1 2 0 0 1 | * * * * * 60 * * * | 0 0 1 1 0 s3s . ♦ 0 3 | 0 0 0 0 0 3 0 | * * * * * * 20 * * | 0 1 0 0 1 . s5s ♦ 0 5 | 0 0 0 0 0 0 5 | * * * * * * * 12 * | 0 0 1 0 1 sefa( s3s5s ) | 0 3 | 0 0 0 0 1 1 1 | * * * * * * * * 60 | 0 0 0 1 1 ------------------------------+-------+----------------------+----------------------------+------------- s3s5s ♦ 60 0 | 30 60 60 0 0 0 0 | 20 12 60 0 0 0 0 0 0 | 1 * * * * s3s . || s3s . ♦ 3 3 | 0 3 0 3 0 3 0 | 1 0 0 0 3 0 1 0 0 | * 20 * * * . s5s || . s5s ♦ 5 5 | 0 0 5 5 0 0 5 | 0 1 0 0 0 5 0 1 0 | * * 12 * * sefa( s3s5s ) || sefa( s3s5s ) ♦ 3 3 | 1 1 1 3 1 1 1 | 0 0 1 1 1 1 0 0 1 | * * * 60 * s3s5s ♦ 0 60 | 0 0 0 0 30 60 60 | 0 0 0 0 0 0 20 12 60 | * * * * 1
© 2004-2024 | top of page |