Acronym | girsiddip |
Name | great-(inverted)-retrosnub-icosidodecahedron prism |
Cross sections |
© |
Face vector | 120, 360, 334, 94 |
External links |
As abstract polytope girsiddip is isomorphic to sniddip, thereby replacing retrrograde icosahedral triangles and retrograde pentagrams respectively by prograde icosahedral triangles and (prograde) pentagons, stip by pip and girsid by snid. – Further it is isomorphic to gosiddip, thereby replacing retrrograde icosahedral triangles and retrograde pentagrams respectively by prograde icosahedral triangles and prograde pentagrams, resp. girsid by gosid. – Finally it is isomorphic to gisiddip, thereby replacing retrrograde icosahedral triangles by prograde icosahedral triangles, resp. girsid by gisid.
Incidence matrix according to Dynkin symbol
x s3/2s5/3s . demi( . . . ) | 120 | 1 1 2 2 | 2 1 1 1 2 3 | 1 1 1 3 --------------------+-----+---------------+--------------------+----------- . ( s 2 s ) | 2 | 60 * * * | 0 0 0 1 0 2 | 0 0 1 2 x demi( . . . ) | 2 | * 60 * * | 2 0 0 1 2 0 | 1 1 0 3 . sefa( s3/2s . ) | 2 | * * 120 * | 1 1 0 0 0 1 | 1 0 1 1 . sefa( . s5/3s ) | 2 | * * * 120 | 0 0 1 0 1 1 | 0 1 1 1 --------------------+-----+---------------+--------------------+----------- x ( s 2 s ) | 4 | 0 2 2 0 | 60 * * * * * | 1 0 0 1 . s3/2s . ♦ 3 | 0 0 3 0 | * 40 * * * * | 1 0 1 0 . . s5/3s ♦ 5 | 0 0 0 5 | * * 24 * * * | 0 1 1 0 x sefa( s3/2s . ) | 4 | 2 2 0 0 | * * * 30 * * | 0 0 0 2 x sefa( . s5/3s ) | 4 | 0 2 0 2 | * * * * 60 * | 0 1 0 1 . sefa( s3/2s5/3s ) | 3 | 1 0 1 1 | * * * * * 120 | 0 0 1 1 --------------------+-----+---------------+--------------------+----------- x s3/2s . ♦ 6 | 0 3 6 0 | 3 2 0 0 0 0 | 20 * * * x . s5/3s ♦ 10 | 0 5 0 10 | 0 0 2 0 5 0 | * 12 * * . s3/2s5/3s ♦ 60 | 30 0 60 60 | 0 20 12 0 0 60 | * * 2 * x sefa( s3/2s5/3s ) ♦ 6 | 2 3 2 2 | 1 0 0 1 1 2 | * * * 60
s3/2s5/3s || s3/2s5/3s (girsid || girsid) demi( . . . ) | 60 * | 1 2 2 1 0 0 0 | 1 1 3 1 2 2 0 0 0 | 1 1 1 3 0 demi( . . . ) | * 60 | 0 0 0 1 1 2 2 | 0 0 0 1 2 2 1 1 3 | 0 1 1 3 1 --------------------------------------+-------+----------------------+----------------------------+------------- s 2 s | 2 0 | 30 * * * * * * | 0 0 2 1 0 0 0 0 0 | 1 0 0 2 0 sefa( s3/2s . ) | 2 0 | * 60 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0 sefa( . s5/3s ) | 2 0 | * * 60 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * * 60 * * * | 0 0 0 1 2 2 0 0 0 | 0 1 1 3 0 s 2 s | 0 2 | * * * * 30 * * | 0 0 0 1 0 0 0 0 2 | 0 0 0 2 1 sefa( s3/2s . ) | 0 2 | * * * * * 60 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1 sefa( . s5/3s ) | 0 2 | * * * * * * 60 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 --------------------------------------+-------+----------------------+----------------------------+------------- s3/2s . ♦ 3 0 | 0 3 0 0 0 0 0 | 20 * * * * * * * * | 1 1 0 0 0 . s5/3s ♦ 5 0 | 0 0 5 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0 sefa( s3/2s5/3s ) | 3 0 | 1 1 1 0 0 0 0 | * * 60 * * * * * * | 1 0 0 1 0 s 2 s || s 2 s | 2 2 | 1 0 0 2 1 0 0 | * * * 30 * * * * * | 0 0 0 2 0 sefa( s3/2s . ) || sefa( s3/2s . ) | 2 2 | 0 1 0 2 0 1 0 | * * * * 60 * * * * | 0 1 0 1 0 sefa( . s5/3s ) || sefa( . s5/3s ) | 2 2 | 0 0 1 2 0 0 1 | * * * * * 60 * * * | 0 0 1 1 0 s3/2s . ♦ 0 3 | 0 0 0 0 0 3 0 | * * * * * * 20 * * | 0 1 0 0 1 . s5/3s ♦ 0 5 | 0 0 0 0 0 0 5 | * * * * * * * 12 * | 0 0 1 0 1 sefa( s3/2s5/3s ) | 0 3 | 0 0 0 0 1 1 1 | * * * * * * * * 60 | 0 0 0 1 1 --------------------------------------+-------+----------------------+----------------------------+------------- s3/2s5/3s ♦ 60 0 | 30 60 60 0 0 0 0 | 20 12 60 0 0 0 0 0 0 | 1 * * * * s3/2s . || s3/2s . ♦ 3 3 | 0 3 0 3 0 3 0 | 1 0 0 0 3 0 1 0 0 | * 20 * * * . s5/3s || . s5/3s ♦ 5 5 | 0 0 5 5 0 0 5 | 0 1 0 0 0 5 0 1 0 | * * 12 * * sefa( s3/2s5/3s ) || sefa( s3/2s5/3s ) ♦ 3 3 | 1 1 1 3 1 1 1 | 0 0 1 1 1 1 0 0 1 | * * * 60 * s3/2s5/3s ♦ 0 60 | 0 0 0 0 30 60 60 | 0 0 0 0 0 0 20 12 60 | * * * * 1
© 2004-2024 | top of page |