Acronym | gosiddip |
Name | great-snub-icosidodecahedron prism |
Face vector | 120, 360, 334, 94 |
External links |
As abstract polytope gosiddip is isomorphic to sniddip, thereby replacing pentagrams by pentagons, resp. replacing stip by pip and gosid by snid. – Further it is isomorphic to gisiddip, thereby replacing (prograde) pentagrams respectively by retrograde pentagrams, resp. gosid by gisid. – Finally it is isomorphic to girsiddip, thereby replacing prograde icosahedral triangles and (prograde) pentagrams respectively by retrrograde icosahedral triangles and retrograde pentagrams, resp. gosid by girsid.
Incidence matrix according to Dynkin symbol
x s3s5/2s . demi( . . . ) | 120 | 1 1 2 2 | 2 1 1 1 2 3 | 1 1 1 3 ------------------+-----+---------------+--------------------+----------- . ( s 2 s ) | 2 | 60 * * * | 0 0 0 1 0 2 | 0 0 1 2 x demi( . . . ) | 2 | * 60 * * | 2 0 0 1 2 0 | 1 1 0 3 . sefa( s3s . ) | 2 | * * 120 * | 1 1 0 0 0 1 | 1 0 1 1 . sefa( . s5/2s ) | 2 | * * * 120 | 0 0 1 0 1 1 | 0 1 1 1 ------------------+-----+---------------+--------------------+----------- x ( s 2 s ) | 4 | 0 2 2 0 | 60 * * * * * | 1 0 0 1 . s3s . ♦ 3 | 0 0 3 0 | * 40 * * * * | 1 0 1 0 . . s5/2s ♦ 5 | 0 0 0 5 | * * 24 * * * | 0 1 1 0 x sefa( s3s . ) | 4 | 2 2 0 0 | * * * 30 * * | 0 0 0 2 x sefa( . s5/2s ) | 4 | 0 2 0 2 | * * * * 60 * | 0 1 0 1 . sefa( s3s5/2s ) | 3 | 1 0 1 1 | * * * * * 120 | 0 0 1 1 ------------------+-----+---------------+--------------------+----------- x s3s . ♦ 6 | 0 3 6 0 | 3 2 0 0 0 0 | 20 * * * x . s5/2s ♦ 10 | 0 5 0 10 | 0 0 2 0 5 0 | * 12 * * . s3s5/2s ♦ 60 | 30 0 60 60 | 0 20 12 0 0 60 | * * 2 * x sefa( s3s5/2s ) ♦ 6 | 2 3 2 2 | 1 0 0 1 1 2 | * * * 60
s3s5/2s || s3s5/2s (gosid || gosid) demi( . . . ) | 60 * | 1 2 2 1 0 0 0 | 1 1 3 1 2 2 0 0 0 | 1 1 1 3 0 demi( . . . ) | * 60 | 0 0 0 1 1 2 2 | 0 0 0 1 2 2 1 1 3 | 0 1 1 3 1 ----------------------------------+-------+----------------------+----------------------------+------------- s 2 s | 2 0 | 30 * * * * * * | 0 0 2 1 0 0 0 0 0 | 1 0 0 2 0 sefa( s3s . ) | 2 0 | * 60 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0 sefa( . s5/2s ) | 2 0 | * * 60 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * * 60 * * * | 0 0 0 1 2 2 0 0 0 | 0 1 1 3 0 s 2 s | 0 2 | * * * * 30 * * | 0 0 0 1 0 0 0 0 2 | 0 0 0 2 1 sefa( s3s . ) | 0 2 | * * * * * 60 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1 sefa( . s5/2s ) | 0 2 | * * * * * * 60 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 ----------------------------------+-------+----------------------+----------------------------+------------- s3s . ♦ 3 0 | 0 3 0 0 0 0 0 | 20 * * * * * * * * | 1 1 0 0 0 . s5/2s ♦ 5 0 | 0 0 5 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0 sefa( s3s5/2s ) | 3 0 | 1 1 1 0 0 0 0 | * * 60 * * * * * * | 1 0 0 1 0 s 2 s || s 2 s | 2 2 | 1 0 0 2 1 0 0 | * * * 30 * * * * * | 0 0 0 2 0 sefa( s3s . ) || sefa( s3s . ) | 2 2 | 0 1 0 2 0 1 0 | * * * * 60 * * * * | 0 1 0 1 0 sefa( . s5/2s ) || sefa( . s5/2s ) | 2 2 | 0 0 1 2 0 0 1 | * * * * * 60 * * * | 0 0 1 1 0 s3s . ♦ 0 3 | 0 0 0 0 0 3 0 | * * * * * * 20 * * | 0 1 0 0 1 . s5/2s ♦ 0 5 | 0 0 0 0 0 0 5 | * * * * * * * 12 * | 0 0 1 0 1 sefa( s3s5/2s ) | 0 3 | 0 0 0 0 1 1 1 | * * * * * * * * 60 | 0 0 0 1 1 ----------------------------------+-------+----------------------+----------------------------+------------- s3s5/2s ♦ 60 0 | 30 60 60 0 0 0 0 | 20 12 60 0 0 0 0 0 0 | 1 * * * * s3s . || s3s . ♦ 3 3 | 0 3 0 3 0 3 0 | 1 0 0 0 3 0 1 0 0 | * 20 * * * . s5/2s || . s5/2s ♦ 5 5 | 0 0 5 5 0 0 5 | 0 1 0 0 0 5 0 1 0 | * * 12 * * sefa( s3s5/2s ) || sefa( s3s5/2s ) ♦ 3 3 | 1 1 1 3 1 1 1 | 0 0 1 1 1 1 0 0 1 | * * * 60 * s3s5/2s ♦ 0 60 | 0 0 0 0 30 60 60 | 0 0 0 0 0 0 20 12 60 | * * * * 1
© 2004-2025 | top of page |