Acronym | sirdtaxadiap |
Name |
small retroditetrahedronary hexacosidishecatonicosachoron atop alternate small retroditetrahedronary hexacosidishecatonicosachoron, small retroditetrahedronary hexacosidishecatonicosachoron alterprism |
Circumradius | sqrt[(23+9 sqrt(5))/8] = 2.321762 |
Face vector | 1200, 9600, 14880, 7920, 1442 |
Confer |
|
As abstract polytope sirdtaxadiap is isomorphic to gadtaxadiap, thereby replacing pentagons by pentagrams, resp. replacing does by gissids, ids by gids, and paps by staps, resp. replacing sirdtaxadies by gadtaxadies and doaids by gissidagids.
Incidence matrix according to Dynkin symbol
xo3oo3oo3/2ox5*a&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(sirdtaxady || alt. sirdtaxady)
o.3o.3o.3/2o.5*a & | 1200 | 12 4 | 12 12 18 | 4 6 4 16 12 | 1 5 10
----------------------+------+-----------+----------------+------------------------+-----------
x. .. .. .. & | 2 | 7200 * | 2 2 1 | 1 2 1 2 2 | 1 1 3
oo3oo3oo3/2oo5*a&#x | 2 | * 2400 | 0 0 6 | 0 0 0 6 6 | 0 2 6
----------------------+------+-----------+----------------+------------------------+-----------
x.3o. .. .. & | 3 | 3 0 | 4800 * * | 1 1 0 1 0 | 1 1 1
x. .. .. o.5*a & | 5 | 5 0 | * 2880 * | 0 1 1 0 1 | 1 0 2
xo .. .. .. &#x & | 3 | 1 2 | * * 7200 | 0 0 0 2 2 | 0 1 3
----------------------+------+-----------+----------------+------------------------+-----------
x.3o.3o. .. & ♦ 4 | 6 0 | 4 0 0 | 1200 * * * * | 1 1 0
x.3o. .. o.5*a & ♦ 30 | 60 0 | 20 12 0 | * 240 * * * | 1 0 1
x. .. o.3/2o.5*a & ♦ 20 | 30 0 | 0 12 0 | * * 240 * * | 1 0 1
xo3oo .. .. &#x & ♦ 4 | 3 3 | 1 0 3 | * * * 4800 * | 0 1 1
xo .. .. ox5*a&#x ♦ 10 | 10 10 | 0 2 10 | * * * * 1440 | 0 0 2
----------------------+------+-----------+----------------+------------------------+-----------
x.3o.3o.3/2o.5*a & ♦ 600 | 3600 0 | 2400 1440 0 | 600 120 120 0 0 | 2 * *
xo3oo3oo .. &#x & ♦ 5 | 6 4 | 4 0 6 | 1 0 0 4 0 | * 1200
xo3oo .. ox5*a&#x & ♦ 50 | 90 60 | 20 24 90 | 0 1 1 20 12 | * * 240
© 2004-2025 | top of page |