Acronym | gadtaxadiap |
Name |
grand ditetrahedronary hexacosadishecatonicosachoron atop alternate grand ditetrahedronary hexacosadishecatonicosachoron, grand ditetrahedronary hexacosadishecatonicosachoron alterprism |
Circumradius | sqrt[(5+sqrt(5))/8] = 0.951057 |
Face vector | 1200, 9600, 14880, 7920, 1442 |
Confer |
|
As abstract polytope gadtaxadiap is isomorphic to sirdtaxadiap, thereby replacing pentagrams by pentagons, resp. replacing gissids by does, gids by ids, and staps by paps, resp. replacing gadtaxadies by sirdtaxadies and gissidagids by doaids.
Incidence matrix according to Dynkin symbol
xo3oo3oo3ox5/2*a&#x → height = sqrt[(9 sqrt(5)-19)/2] = 0.749871
(gadtaxady || alt. gadtaxady)
o.3o.3o.3o.5/2*a & | 1200 | 12 4 | 12 12 18 | 4 6 4 16 12 | 1 5 10
----------------------+------+-----------+----------------+------------------------+-----------
x. .. .. .. & | 2 | 7200 * | 2 2 1 | 1 2 1 2 2 | 1 1 3
oo3oo3oo3oo5/2*a&#x | 2 | * 2400 | 0 0 6 | 0 0 0 6 6 | 0 2 6
----------------------+------+-----------+----------------+------------------------+-----------
x.3o. .. .. & | 3 | 3 0 | 4800 * * | 1 1 0 1 0 | 1 1 1
x. .. .. o.5/2*a & | 5 | 5 0 | * 2880 * | 0 1 1 0 1 | 1 0 2
xo .. .. .. &#x & | 3 | 1 2 | * * 7200 | 0 0 0 2 2 | 0 1 3
----------------------+------+-----------+----------------+------------------------+-----------
x.3o.3o. .. & ♦ 4 | 6 0 | 4 0 0 | 1200 * * * * | 1 1 0
x.3o. .. o.5/2*a & ♦ 30 | 60 0 | 20 12 0 | * 240 * * * | 1 0 1
x. .. o.3o.5/2*a & ♦ 20 | 30 0 | 0 12 0 | * * 240 * * | 1 0 1
xo3oo .. .. &#x & ♦ 4 | 3 3 | 1 0 3 | * * * 4800 * | 0 1 1
xo .. .. ox5/2*a&#x ♦ 10 | 10 10 | 0 2 10 | * * * * 1440 | 0 0 2
----------------------+------+-----------+----------------+------------------------+-----------
x.3o.3o.3o.5/2*a & ♦ 600 | 3600 0 | 2400 1440 0 | 600 120 120 0 0 | 2 * *
xo3oo3oo .. &#x & ♦ 5 | 6 4 | 4 0 6 | 1 0 0 4 0 | * 1200 *
xo3oo .. ox5/2*a&#x & ♦ 50 | 90 60 | 20 24 90 | 0 1 1 20 12 | * * 240
© 2004-2025 | top of page |