As abstract polytope sirdtapady+600 2tet is isomorphic to gadathiphi+600 2tet, thereby replacing pentagons by pentagrams, resp. doe by gissid and srid by qrid.

This Grünbaumian fissary polychoron can be seen as sirdtapady, filling up the spaces of the 600 pseudo tet by duoble-covers thereof, cross-linking the boundaries, thus that it becomes a true dyadic polychoron again. Sure, the triangles coincide by pairs. And the larger class of edges likewise coincide pairwise. Moreover vertices are given with trigonal axial vertex figures, coinciding by 4 so that the compound of those vertex figures gets that ditetrahedral symmetry of the one of its colonel.

Incidence matrix

```x5o3x3/2o3*b

. . .   .    | 2400 |    3    6 |    3    6    3    3 |   3   1    3   1
-------------+------+-----------+---------------------+-----------------
x . .   .    |    2 | 3600    * |    2    2    0    0 |   2   1    1   0
. . x   .    |    2 |    * 7200 |    0    1    1    1 |   1   0    1   1
-------------+------+-----------+---------------------+-----------------
x5o .   .    |    5 |    5    0 | 1440    *    *    * |   1   1    0   0
x . x   .    |    4 |    2    2 |    * 3600    *    * |   1   0    1   0
. o3x   .    |    3 |    0    3 |    *    * 2400    * |   1   0    0   1
. . x3/2o    |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------+------+-----------+---------------------+-----------------
x5o3x   .    ♦   60 |   60   60 |   12   30   20    0 | 120   *    *   *
x5o .   o3*b ♦   20 |   30    0 |   12    0    0    0 |   * 120    *   *
x . x3/2o    ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3x3/2o3*b ♦    4 |    0   12 |    0    0    4    4 |   *   *    * 600
```

```x5o3x3o3/2*b

. . . .      | 2400 |    3    6 |    3    6    3    3 |   3   1    3   1
-------------+------+-----------+---------------------+-----------------
x . . .      |    2 | 3600    * |    2    2    0    0 |   2   1    1   0
. . x .      |    2 |    * 7200 |    0    1    1    1 |   1   0    1   1
-------------+------+-----------+---------------------+-----------------
x5o . .      |    5 |    5    0 | 1440    *    *    * |   1   1    0   0
x . x .      |    4 |    2    2 |    * 3600    *    * |   1   0    1   0
. o3x .      |    3 |    0    3 |    *    * 2400    * |   1   0    0   1
. . x3o      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------+------+-----------+---------------------+-----------------
x5o3x .      ♦   60 |   60   60 |   12   30   20    0 | 120   *    *   *
x5o . o3/2*b ♦   20 |   30    0 |   12    0    0    0 |   * 120    *   *
x . x3o      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3x3o3/2*b ♦    4 |    0   12 |    0    0    4    4 |   *   *    * 600
```

```x5/4o3/2x3o3*b

.   .   . .    | 2400 |    3    6 |    3    6    3    3 |   3   1    3   1
---------------+------+-----------+---------------------+-----------------
x   .   . .    |    2 | 3600    * |    2    2    0    0 |   2   1    1   0
.   .   x .    |    2 |    * 7200 |    0    1    1    1 |   1   0    1   1
---------------+------+-----------+---------------------+-----------------
x5/4o   . .    |    5 |    5    0 | 1440    *    *    * |   1   1    0   0
x   .   x .    |    4 |    2    2 |    * 3600    *    * |   1   0    1   0
.   o3/2x .    |    3 |    0    3 |    *    * 2400    * |   1   0    0   1
.   .   x3o    |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
---------------+------+-----------+---------------------+-----------------
x5/4o3/2x .    ♦   60 |   60   60 |   12   30   20    0 | 120   *    *   *
x5/4o   . o3*b ♦   20 |   30    0 |   12    0    0    0 |   * 120    *   *
x   .   x3o    ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3/2x3o3*b ♦    4 |    0   12 |    0    0    4    4 |   *   *    * 600
```

```x5/4o3/2x3/2o3/2*b

.   .   .   .      | 2400 |    3    6 |    3    6    3    3 |   3   1    3   1
-------------------+------+-----------+---------------------+-----------------
x   .   .   .      |    2 | 3600    * |    2    2    0    0 |   2   1    1   0
.   .   x   .      |    2 |    * 7200 |    0    1    1    1 |   1   0    1   1
-------------------+------+-----------+---------------------+-----------------
x5/4o   .   .      |    5 |    5    0 | 1440    *    *    * |   1   1    0   0
x   .   x   .      |    4 |    2    2 |    * 3600    *    * |   1   0    1   0
.   o3/2x   .      |    3 |    0    3 |    *    * 2400    * |   1   0    0   1
.   .   x3/2o      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------------+------+-----------+---------------------+-----------------
x5/4o3/2x   .      ♦   60 |   60   60 |   12   30   20    0 | 120   *    *   *
x5/4o   .   o3/2*b ♦   20 |   30    0 |   12    0    0    0 |   * 120    *   *
x   .   x3/2o      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3/2x3/2o3/2*b ♦    4 |    0   12 |    0    0    4    4 |   *   *    * 600
```