Acronym rapete Name rap tettene Circumradius sqrt(3)/2 = 0.866025 Confer general polytopal classes: segmentoexa   scalene   tettene

Incidence matrix according to Dynkin symbol

```xo3oo oo3ox3oo3oo&#x   → height = 1/sqrt(15) = 0.258199
({3} || perp rap)

o.3o. o.3o.3o.3o.    | 3  * ♦ 2 10  0 | 1 20 30  0  0 | 10 60 10 20 0 0 | 30 20 40  5  5 0 | 10 20 10 10 1 | 5 5 2
.o3.o .o3.o3.o3.o    | * 10 | 0  3  6 | 0  3 18  3  6 |  1 18  9 18 3 2 |  6  9 18  9  6 1 |  3  6  9  6 3 | 3 2 3
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
x. .. .. .. .. ..    | 2  0 | 3  *  * ♦ 1 10  0  0  0 | 10 30  0  0 0 0 | 30 10 20  0  0 0 | 10 20  5  5 0 | 5 5 1
oo3oo oo3oo3oo3oo&#x | 1  1 | * 30  * | 0  2  6  0  0 |  1 12  3  6 0 0 |  6  6 12  3  2 0 |  3  6  6  4 1 | 3 2 2
.. .. .. .x .. ..    | 0  2 | *  * 30 | 0  0  3  1  2 |  0  3  3  6 2 1 |  1  3  6  6  3 1 |  1  2  6  3 3 | 2 1 3
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
x.3o. .. .. .. ..    | 3  0 | 3  0  0 | 1  *  *  *  * ♦ 10  0  0  0 0 0 | 30  0  0  0  0 0 | 10 20  0  0 0 | 5 5 0
xo .. .. .. .. ..&#x | 2  1 | 1  2  0 | * 30  *  *  * ♦  1  6  0  0 0 0 |  6  3  6  0  0 0 |  3  6  3  2 0 | 3 2 1
.. .. .. ox .. ..&#x | 1  2 | 0  2  1 | *  * 90  *  * |  0  2  1  2 0 0 |  1  2  4  2  1 0 |  1  2  4  2 1 | 2 1 2
.. .. .o3.x .. ..    | 0  3 | 0  0  3 | *  *  * 10  * |  0  0  3  0 2 0 |  0  3  0  6  0 1 |  1  0  6  0 3 | 2 0 3
.. .. .. .x3.o ..    | 0  3 | 0  0  3 | *  *  *  * 20 |  0  0  0  3 1 1 |  0  0  3  3  3 1 |  0  1  3  3 3 | 1 1 3
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
xo3oo .. .. .. ..&#x ♦ 3  1 | 3  3  0 | 1  3  0  0  0 | 10  *  *  * * * ♦  6  0  0  0  0 0 |  3  6  0  0 0 | 3 2 0
xo .. .. ox .. ..&#x ♦ 2  2 | 1  4  1 | 0  2  2  0  0 |  * 90  *  * * * |  1  1  2  0  0 0 |  1  2  2  1 0 | 2 1 1
.. .. oo3ox .. ..&#x ♦ 1  3 | 0  3  3 | 0  0  3  1  0 |  *  * 30  * * * |  0  2  0  2  0 0 |  1  0  4  0 1 | 2 0 2
.. .. .. ox3oo ..&#x ♦ 1  3 | 0  3  3 | 0  0  3  0  1 |  *  *  * 60 * * |  0  0  2  1  1 0 |  0  1  2  2 1 | 1 1 2
.. .. .o3.x3.o ..    ♦ 0  6 | 0  0 12 | 0  0  0  4  4 |  *  *  *  * 5 * |  0  0  0  3  0 1 |  0  0  3  0 3 | 1 0 3
.. .. .. .x3.o3.o    ♦ 0  4 | 0  0  6 | 0  0  0  0  4 |  *  *  *  * * 5 |  0  0  0  0  3 1 |  0  0  0  3 3 | 0 1 3
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
xo3oo .. ox .. ..&#x ♦ 3  2 | 3  6  1 | 1  6  3  0  0 |  2  3  0  0 0 0 | 30  *  *  *  * * |  1  2  0  0 0 | 2 1 0
xo .. oo3ox .. ..&#x ♦ 2  3 | 1  6  3 | 0  3  6  1  0 |  0  3  2  0 0 0 |  * 30  *  *  * * |  1  0  2  0 0 | 2 0 1
xo .. .. ox3oo ..&#x ♦ 2  3 | 1  6  3 | 0  3  6  0  1 |  0  3  0  2 0 0 |  *  * 60  *  * * |  0  1  1  1 0 | 1 1 1
.. .. oo3ox3oo ..&#x ♦ 1  6 | 0  6 12 | 0  0 12  4  4 |  0  0  4  4 1 0 |  *  *  * 15  * * |  0  0  2  0 1 | 1 0 2
.. .. .. ox3oo3oo&#x ♦ 1  4 | 0  4  6 | 0  0  6  0  4 |  0  0  0  4 0 1 |  *  *  *  * 15 * |  0  0  0  2 1 | 0 1 2
.. .. .o3.x3.o3.o    ♦ 0 10 | 0  0 30 | 0  0  0 10 20 |  0  0  0  0 5 5 |  *  *  *  *  * 1 |  0  0  0  0 3 | 0 0 3
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
xo3oo oo3ox .. ..&#x ♦ 3  3 | 3  9  3 | 1  9  9  1  0 |  3  9  3  0 0 0 |  3  3  0  0  0 0 | 10  *  *  * * | 2 0 0
xo3oo .. ox3oo ..&#x ♦ 3  3 | 3  9  3 | 1  9  9  0  1 |  3  9  0  3 0 0 |  3  0  3  0  0 0 |  * 20  *  * * | 1 1 0
xo .. oo3ox3oo ..&#x ♦ 2  6 | 1 12 12 | 0  6 24  4  4 |  0 12  8  8 1 0 |  0  4  4  2  0 0 |  *  * 15  * * | 1 0 1
xo .. .. ox3oo3oo&#x ♦ 2  4 | 1  8  6 | 0  4 12  0  4 |  0  6  0  8 0 1 |  0  0  4  0  2 0 |  *  *  * 15 * | 0 1 1
.. .. oo3ox3oo3oo&#x ♦ 1 10 | 0 10 30 | 0  0 30 10 20 |  0  0 10 20 5 5 |  0  0  0  5  5 1 |  *  *  *  * 3 | 0 0 2
---------------------+------+---------+---------------+-----------------+------------------+---------------+------
xo3oo oo3ox3oo ..&#x ♦ 3  6 | 3 18 12 | 1 18 36  4  4 |  6 36 12 12 1 0 | 12 12 12  3  0 0 |  4  4  3  0 0 | 5 * *
xo3oo .. ox3oo3oo&#x ♦ 3  4 | 3 12  6 | 1 12 18  0  4 |  4 18  0 12 0 1 |  6  0 12  0  3 0 |  0  4  0  3 0 | * 5 *
xo .. oo3ox3oo3oo&#x ♦ 2 10 | 1 20 30 | 0 10 60 10 20 |  0 30 20 40 5 5 |  0 10 20 10 10 1 |  0  0  5  5 2 | * * 3
```