Acronym | quitoxog |
Name | quasiterated hexeractihexacontatetrapeton |
Circumradius | sqrt[2-1/sqrt(2)] = 1.137055 |
Inradius wrt. hix | -[3 sqrt(2)-1]/sqrt(12) = -0.936070 |
Inradius wrt. penp | [5-sqrt(2)]/sqrt(20) = 0.801806 |
Inradius wrt. squatet | -[2 sqrt(2)-1]/sqrt(8) = -0.646447 |
Inradius wrt. tracube | [3-sqrt(2)]/sqrt(12) = 0.457777 |
Inradius wrt. pent | -(sqrt(2)-1)/2 = -0.207107 |
Coordinates | ((sqrt(2)-1)/2, 1/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Volume | [833-579 sqrt(2)]/45 = 0.314897 |
Surface | [1080+300 sqrt(2)+601 sqrt(3)+30 sqrt(5)]/15 = 174.153910 |
Dihedral angles
(at margins) | |
Face vector | 384, 1920, 4160, 4800, 2904, 728 |
Confer |
|
As abstract polytope quitoxog is isomorphic to stoxog.
Incidence matrix according to Dynkin symbol
x3o3o3o3o4/3x . . . . . . | 384 | 5 5 | 10 20 10 | 10 30 30 10 | 5 20 30 20 5 | 1 5 10 10 5 1 --------------+-----+---------+---------------+-------------------+---------------------+--------------------- x . . . . . | 2 | 960 * | 4 4 0 | 6 12 6 0 | 4 12 12 4 0 | 1 4 6 4 1 0 . . . . . x | 2 | * 960 | 0 4 4 | 0 6 12 6 | 0 4 12 12 4 | 0 1 4 6 4 1 --------------+-----+---------+---------------+-------------------+---------------------+--------------------- x3o . . . . | 3 | 3 0 | 1280 * * | 3 3 0 0 | 3 6 3 0 0 | 1 3 3 1 0 0 x . . . . x | 4 | 2 2 | * 1920 * | 0 3 3 0 | 0 3 6 3 0 | 0 1 3 3 1 0 . . . . o4/3x | 4 | 0 4 | * * 960 | 0 0 3 3 | 0 0 3 6 3 | 0 0 1 3 3 1 --------------+-----+---------+---------------+-------------------+---------------------+--------------------- x3o3o . . . ♦ 4 | 6 0 | 4 0 0 | 960 * * * | 2 2 0 0 0 | 1 2 1 0 0 0 x3o . . . x ♦ 6 | 6 3 | 2 3 0 | * 1920 * * | 0 2 2 0 0 | 0 1 2 1 0 0 x . . . o4/3x ♦ 8 | 4 8 | 0 4 2 | * * 1440 * | 0 0 2 2 0 | 0 0 1 2 1 0 . . . o3o4/3x ♦ 8 | 0 12 | 0 0 6 | * * * 480 | 0 0 0 2 2 | 0 0 0 1 2 1 --------------+-----+---------+---------------+-------------------+---------------------+--------------------- x3o3o3o . . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 | 384 * * * * | 1 1 0 0 0 0 x3o3o . . x ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | * 960 * * * | 0 1 1 0 0 0 x3o . . o4/3x ♦ 12 | 12 12 | 4 12 3 | 0 4 3 0 | * * 960 * * | 0 0 1 1 0 0 x . . o3o4/3x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * * 480 * | 0 0 0 1 1 0 . . o3o3o4/3x ♦ 16 | 0 32 | 0 0 24 | 0 0 0 8 | * * * * 120 | 0 0 0 0 1 1 --------------+-----+---------+---------------+-------------------+---------------------+--------------------- x3o3o3o3o . ♦ 6 | 15 0 | 20 0 0 | 15 0 0 0 | 6 0 0 0 0 | 64 * * * * * x3o3o3o . x ♦ 10 | 20 5 | 20 10 0 | 10 10 0 0 | 2 5 0 0 0 | * 192 * * * * x3o3o . o4/3x ♦ 16 | 24 16 | 16 24 4 | 4 16 6 0 | 0 4 4 0 0 | * * 240 * * * x3o . o3o4/3x ♦ 24 | 24 36 | 8 36 18 | 0 12 18 3 | 0 0 6 3 0 | * * * 160 * * x . o3o3o4/3x ♦ 32 | 16 64 | 0 32 48 | 0 0 24 16 | 0 0 0 8 2 | * * * * 60 * . o3o3o3o4/3x ♦ 32 | 0 80 | 0 0 80 | 0 0 0 40 | 0 0 0 0 10 | * * * * * 12
© 2004-2025 | top of page |